JOINT BAYESIAN DECONVOLUTION AND POINT SPREAD FUNCTION ESTIMATION FOR ULTRASOUND IMAGING

被引:0
|
作者
Zhao, Ningning [1 ,2 ]
Basarab, Adrian [2 ]
Kouame, Denis [2 ]
Tourneret, Jean-Yves [1 ,3 ]
机构
[1] Univ Toulouse, INP ENSEEIHT IRIT, 2 Rue Charles Camichel,BP 7122, F-31071 Toulouse 7, France
[2] Univ Toulouse 3, CNRS UMR 5505, IRIT, Univ Toulouse, Toulouse, France
[3] TeSA Lab, F-31000 Toulouse, France
关键词
Ultrasound imaging; image deconvolution; Bayesian inference; Gibbs sampler; MEDICAL ULTRASOUND; RESTORATION; FRAMEWORK; IMAGES;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper addresses the problem of blind deconvolution for ultrasound images within a Bayesian framework. The prior of the unknown ultrasound image to be estimated is assumed to be a product of generalized Gaussian distributions. The point spread function of the system is also assumed to be unknown and is assigned a Gaussian prior distribution. These priors are combined with the likelihood function to build the joint posterior distribution of the image and PSF. However, it is difficult to derive closed-form expressions of the Bayesian estimators associated with this posterior. Thus, this paper proposes to build estimators of the unknown model parameters from samples generated according to the model posterior using a hybrid Gibbs sampler. Simulation results performed on synthetic data allow the performance of the proposed algorithm to be appreciated.
引用
收藏
页码:235 / 238
页数:4
相关论文
共 50 条
  • [1] Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution
    Orieux, Francois
    Giovannelli, Jean-Francois
    Rodet, Thomas
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2010, 27 (07) : 1593 - 1607
  • [2] Adaptive point-spread function estimation and deconvolution for deep biological imaging
    von Tiedemarm, M
    Fridberger, A
    Tomo, I
    Ulfendahl, M
    de Monvel, JB
    [J]. BIOPHYSICAL JOURNAL, 2005, 88 (01) : 336A - 336A
  • [3] A robust blind deconvolution based on estimation of point spread function parameters
    Tao, QC
    Chen, JG
    Teng, QZ
    Liu, T
    He, XH
    [J]. Electronic Imaging and Multimedia Technology IV, 2005, 5637 : 581 - 589
  • [4] Asymmetric Point Spread Function Estimation and Deconvolution for Serial-Sectioning Block-Face Imaging
    Walsh, Claire
    Holroyd, Natalie
    Shipley, Rebecca
    Walker-Samuel, Simon
    [J]. MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, 2020, 1248 : 235 - 249
  • [5] Incoherent Point Spread Function Estimation and Multipoint Deconvolution for Active Incoherent Millimeter-Wave Imaging
    Colon-Berrios, Jorge R.
    Vakalis, Stavros
    Chen, Daniel
    Nanzer, Jeffrey A.
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2022, 32 (06) : 800 - 803
  • [6] An Homomorphic Filtering And Expectation Maximization Approach For The Point Spread Function Estimation In Ultrasound Imaging
    Benameur, S.
    Mignotte, M.
    Lavoie, F.
    [J]. IMAGE PROCESSING: ALGORITHMS AND SYSTEMS X AND PARALLEL PROCESSING FOR IMAGING APPLICATIONS II, 2012, 8295
  • [7] Imaging Through Deconvolution with a Spatially-Variant Point Spread Function
    Novak, Kyle
    Watnik, Abbie T.
    [J]. COMPUTATIONAL IMAGING VI, 2021, 11731
  • [8] Impact of point spread function support on blind deconvolution for astronomical imaging
    Shao, Hui
    Wu, Dongsheng
    Xu, Quan
    Chen, Jun
    [J]. Journal of Information and Computational Science, 2014, 11 (14): : 5131 - 5140
  • [9] Sensitivity to point-spread function parameters in medical ultrasound image deconvolution
    Shin, Ho-Chul
    Prager, Richard
    Ng, James
    Gomersall, Henry
    Kingsbury, Nick
    Treece, Graham
    Gee, Andrew
    [J]. ULTRASONICS, 2009, 49 (03) : 344 - 357
  • [10] Point Spread Function Estimation for a Terahertz Imaging System
    Dan C. Popescu
    Andrew D. Hellicar
    [J]. EURASIP Journal on Advances in Signal Processing, 2010