Distributed Algorithms for The RFID Coverage Problem

被引:0
|
作者
Jedda, Ahmed [1 ]
Khair, Mazen G. [1 ]
Mouftah, Hussein T. [1 ]
机构
[1] Univ Ottawa, Sch Elect & Comp Sci, Ottawa, ON K1N 6N5, Canada
关键词
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We introduce distributed algorithms for the RFID coverage problem, which is defined as finding the minimum amount of RFID readers that cover every tag. The algorithms depends on rounds of writes and reads in/from the tags' memories. The first algorithm, called Greedy Distributed Elimination (GDE), is inspired of, and equivalent to, the greedy approximation algorithm of the set cover problem. Our second contribution is a randomized algorithm that can run in one or more write/read rounds (called RANDOM and RANDOM+). Using concepts concluded from these algorithms, we introduce algorithm GDE-RANDOM+ which improves further the number of non-redundant readers of GDE by integrating it with RANDOM+.
引用
收藏
页码:1758 / +
页数:2
相关论文
共 50 条
  • [21] DISTRIBUTED GENETIC ALGORITHMS FOR THE FLOORPLAN DESIGN PROBLEM
    COHOON, JP
    HEGDE, SU
    MARTIN, WN
    RICHARDS, DS
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1991, 10 (04) : 483 - 492
  • [22] The distributed constraint satisfaction problem: Formalization and algorithms
    Yokoo, M
    Durfee, EH
    Ishida, T
    Kuwabara, K
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1998, 10 (05) : 673 - 685
  • [23] Distributed Algorithms for Optimal Power Flow Problem
    Lam, Albert Y. S.
    Zhang, Baosen
    Tse, David N.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 430 - 437
  • [24] Generalized Energy-Efficient Algorithms for the RFID Estimation Problem
    Li, Tao
    Wu, Samuel S.
    Chen, Shigang
    Yang, Mark C. K.
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2012, 20 (06) : 1978 - 1990
  • [25] Energy Efficient Distributed Connected Coverage Algorithms with Dynamic Coverage Maintenance in Wireless Sensor Networks
    Senthamilselvi, M.
    Devarajan, N.
    2009 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE, VOLS 1-3, 2009, : 1579 - +
  • [26] The single robot line coverage problem: Theory, algorithms, and experiments
    Agarwal, Saurav
    Akella, Srinivas
    NETWORKS, 2023, 82 (04) : 479 - 505
  • [27] Online algorithms for the maximum k-interval coverage problem
    Songhua Li
    Minming Li
    Lingjie Duan
    Victor C. S. Lee
    Journal of Combinatorial Optimization, 2022, 44 : 3364 - 3404
  • [28] Solving Sensor Grouping Coverage Problem Based on Greedy Algorithms
    Lin, Leilei
    Duan, Qing
    2013 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND MANAGEMENT SCIENCE (ICIEMS 2013), 2013, : 1234 - 1239
  • [29] Exact and heuristic algorithms for the maximum weighted submatrix coverage problem
    Sinnl, Markus
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 298 (03) : 821 - 833
  • [30] Online algorithms for the maximum k-interval coverage problem
    Li, Songhua
    Li, Minming
    Duan, Lingjie
    Lee, Victor C. S.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (05) : 3364 - 3404