Heat-treatment effects on mechanical properties and microstructure evolution of Ti-6Al-4V alloy fabricated by laser powder bed fusion

被引:60
|
作者
Tsai, Min-Tsang [1 ,2 ]
Chen, Yi-Wen [3 ,4 ]
Chao, Chih-Yeh [5 ]
Jang, Jason S. C. [6 ]
Tsai, Chih-Ching [5 ]
Su, Yu-Lun [1 ,2 ]
Kuo, Che-Nan [1 ,2 ]
机构
[1] Asia Univ, Dept Bioinformat & Med Engn, Taichung, Taiwan
[2] Asia Univ, 3D Printing Med Res Inst, Taichung, Taiwan
[3] China Med Univ Hosp, 3D Printing Med Res Ctr, Taichung, Taiwan
[4] China Med Univ, Grad Inst Biomed Sci, Taichung, Taiwan
[5] Natl Pingtung Univ Sci & Technol, Dept Mech Engn, Pingtung, Taiwan
[6] Natl Cent Univ, Dept Mech Engn, Inst Mat Sci & Engn, Taoyuan, Taiwan
关键词
Ti-6Al-4V; Additive manufacturing; Microstructure; Elongation; TENSILE PROPERTIES; BEHAVIOR;
D O I
10.1016/j.jallcom.2019.152615
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, the Ti-6Al-4V alloy fabricated by laser powder bed fusion has been widely studies. According to the high cooling rate, the strength of 3D printed Ti-6Al-4V alloy usually higher than that made by traditional process. In the meanwhile, the residual stress or microstructure feature that caused by high cooling rate usually causes the lower ductility. Therefore, such defects of these Ti-based alloys should be prevented before the application. Besides the porosity, the overall ductility of Ti-based alloys is consisted of its microstructure, of which dominated by acicular alpha' structure with some dislocations or twins. Namely, an important effect on ductility is the alpha' phase decomposed into the alpha phase and beta phase. In present researches, some various heat treatment conditions are performed, and to investigate the relationship between their microstructures and mechanical properties. By proper heat treatment, the temperature of martensitic transition (Ms) temperature was between 750 and 800 degrees C, which is lower than the traditional cast/wrought Ti-6Al-4V alloy. Moreover, through the identification of XRD and TEM, there is alpha' -> alpha + beta transformation and some island beta-phase particles formed at the acicular alpha phase interface. It is also shown that the residual stress can be eliminated after annealed at 600 degrees C for various times resulting to increase the overall elongation about 3-5% without significantly reducing the strength. (C) 2019 Published by Elsevier B.V.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [31] Porosity, Microstructure, and Mechanical Properties of Ti-6Al-4V Alloy Parts Fabricated by Powder Compact Forging
    Jia, Mingtu
    Zhang, Deliang
    Liang, Jiamiao
    Gabbitas, Brian
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2017, 48A (04): : 2015 - 2029
  • [32] Multi-laser powder bed fusion of Ti-6Al-4V alloy: Defect, microstructure, and mechanical property of overlap region
    Wei, Kaiwen
    Li, Fangzhi
    Huang, Gao
    Liu, Mengna
    Deng, Jinfeng
    He, Chongwen
    Zeng, Xiaoyan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
  • [33] Heat-Treatment Effects on the Microstructure and Tensile Properties of Powder Metallurgy Ti-6Al-4V Alloys Modified with Boron
    Mceldowney, Dale J.
    Tamirisakandala, Seshacharyulu
    Miracle, Daniel B.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2010, 41A (04): : 1003 - 1015
  • [34] Heat-Treatment Effects on the Microstructure and Tensile Properties of Powder Metallurgy Ti-6Al-4V Alloys Modified with Boron
    Dale J. McEldowney
    Seshacharyulu Tamirisakandala
    Daniel B. Miracle
    Metallurgical and Materials Transactions A, 2010, 41 : 1003 - 1015
  • [35] Effect of heat treatment on microstructure and corrosion behavior of Ti6Al4V fabricated by laser beam powder bed fusion
    Zhang, Hongwei
    Qin, Wentao
    Man, Cheng
    Cui, Hongzhi
    Kong, Decheng
    Cui, Zhongyu
    Wang, Xin
    Dong, Chaofang
    CORROSION SCIENCE, 2022, 209
  • [36] Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting
    Simonelli, Marco
    Tse, Yau Yau
    Tuck, Christopher
    TMS 2012 141ST ANNUAL MEETING & EXHIBITION - SUPPLEMENTAL PROCEEDINGS, VOL 1: MATERIALS PROCESSING AND INTERFACES, 2012, : 863 - 870
  • [37] Effect of Heat Treatment on Corrosion Properties of Ti-6Al-4V Titanium Alloy Produced by Electron Powder Bed Fusion
    Huang, Junyuan
    Zhang, Wei
    Xu, Haiying
    Fang, Weiping
    JOM, 2024, 76 (06) : 3039 - 3049
  • [38] Effects of Ti and Al additions on microstructure and mechanical properties of FeCrNi medium entropy alloy fabricated by laser powder bed fusion
    Bai, Xi
    Wang, Jianqiu
    Han, Enhou
    Wang, Lei
    MATERIALS CHARACTERIZATION, 2024, 208
  • [39] Heat treatment effects on the hydrogen embrittlement of Ti6Al4V fabricated by laser beam powder bed fusion
    Kong, Decheng
    Zhao, Dechao
    Zhu, Guoliang
    Ni, Xiaoqing
    Zhang, Liang
    Wu, Wenheng
    Man, Cheng
    Zhou, Yiqi
    Dong, Chaofang
    Sun, Baode
    ADDITIVE MANUFACTURING, 2022, 50
  • [40] Experimental study on mechanical properties of laser powder bed fused Ti-6Al-4V alloy under post-heat treatment
    Chen, Bingqing
    Wu, Zhengkai
    Yan, Taiqi
    He, Ziang
    Sun, Bingbing
    Guo, Guangping
    Wu, Shengchuan
    ENGINEERING FRACTURE MECHANICS, 2022, 261