Optimal Control of Probability Density Functions of Stochastic Processes

被引:49
|
作者
Annunziato, M. [1 ]
Borzi, A. [2 ,3 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
[2] Univ Sannio, Dipartimento & Fac Ingn, I-82100 Benevento, Italy
[3] Karl Franzens Univ Graz, Inst Math & Wissensch Rechnen, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
probability density function control; Fokker-Planck equation; optimal control theory; receding-horizon; stochastic process; SYSTEMS;
D O I
10.3846/1392-6292.2010.15.393-407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Fokker-Planck framework for the formulation of an optimal control strategy of stochastic processes is presented. Within this strategy, the control objectives are defined based on the probability density functions of the stochastic processes. The optimal control is obtained as the minimizer of the objective under the constraint given by the Fokker-Planck model. Representative stochastic processes are considered with different control laws and with the purpose of attaining a final target configuration or tracking a desired trajectory. In this latter case, a receding-horizon algorithm over a sequence of time windows is implemented.
引用
收藏
页码:393 / 407
页数:15
相关论文
共 50 条
  • [31] H∞ filtering of the output probability density functions for the stochastic singular systems
    Lu, Renquan
    Dai, Xiaozhen
    Xue, Anke
    [J]. CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 3860 - 3865
  • [32] CALCULATION OF JOINT PROBABILITY DENSITY OF SLIGHTLY NONLINEAR STOCHASTIC-PROCESSES
    JENSEN, JJ
    PEDERSEN, PT
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (07): : T481 - T482
  • [33] Time-dependent probability density function in cubic stochastic processes
    Kim, Eun-jin
    Hollerbach, Rainer
    [J]. PHYSICAL REVIEW E, 2016, 94 (05)
  • [34] Statistical learning for probability-constrained stochastic optimal control
    Balata, Alessandro
    Ludkovski, Michael
    Maheshwari, Aditya
    Palczewski, Jan
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 290 (02) : 640 - 656
  • [35] The shape control of probability density function for a class of stochastic systems
    Yang H.
    Qian F.
    Gao S.
    Jiang T.
    [J]. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2016, 36 (09): : 2424 - 2431
  • [36] A Survey of the Probability Density Function Control for Stochastic Dynamic Systems
    Ren, Mifeng
    Zhang, Qichun
    Zhang, Jianhua
    [J]. 2018 24TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC' 18), 2018, : 423 - 429
  • [37] A new control approach of output probability density functions for dynamic stochastic systems using Parzen window estimate
    Yang Chengzhi
    [J]. PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 6, 2007, : 362 - 367
  • [38] Control of conditional output probability density functions for general nonlinear and non-Gaussian dynamic stochastic systems
    Wang, H
    [J]. IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2003, 150 (01): : 55 - 60
  • [39] ADJOINT PROCESSES IN STOCHASTIC OPTIMAL-CONTROL PROBLEMS
    YONEYAMA, T
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1984, 39 (03) : 423 - 431
  • [40] OPTIMAL CONTROL OF ULTIMATELY BOUNDED STOCHASTIC-PROCESSES
    MIYAHARA, Y
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1974, 53 (MAY) : 157 - 170