Optimal Control of Probability Density Functions of Stochastic Processes

被引:49
|
作者
Annunziato, M. [1 ]
Borzi, A. [2 ,3 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
[2] Univ Sannio, Dipartimento & Fac Ingn, I-82100 Benevento, Italy
[3] Karl Franzens Univ Graz, Inst Math & Wissensch Rechnen, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
probability density function control; Fokker-Planck equation; optimal control theory; receding-horizon; stochastic process; SYSTEMS;
D O I
10.3846/1392-6292.2010.15.393-407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Fokker-Planck framework for the formulation of an optimal control strategy of stochastic processes is presented. Within this strategy, the control objectives are defined based on the probability density functions of the stochastic processes. The optimal control is obtained as the minimizer of the objective under the constraint given by the Fokker-Planck model. Representative stochastic processes are considered with different control laws and with the purpose of attaining a final target configuration or tracking a desired trajectory. In this latter case, a receding-horizon algorithm over a sequence of time windows is implemented.
引用
收藏
页码:393 / 407
页数:15
相关论文
共 50 条
  • [1] Integrated nonparametric estimations of probability density of stochastic processes by atomic functions
    Kravchenko, Victor F.
    Churikov, Dmitry V.
    [J]. 2012 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION (DD), 2012, : 152 - 157
  • [2] Optimal probability density function control for NARMAX stochastic systems
    Guo, L.
    Wang, H.
    Wang, A. P.
    [J]. AUTOMATICA, 2008, 44 (07) : 1904 - 1911
  • [3] Nonlinear stochastic control via stationary probability density functions
    Crespo, LG
    Sun, JQ
    [J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2029 - 2034
  • [4] STOCHASTIC OPTIMAL CONTROL OF RISK PROCESSES WITH LIPSCHITZ PAYOFF FUNCTIONS
    Norkin, B. V.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2014, 50 (05) : 774 - 787
  • [5] On the feedback control of stochastic systems tracking prespecified probability density functions
    Elbeyli, O
    Hong, L
    Sun, JQ
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2005, 27 (05) : 319 - 329
  • [6] Feedback control of stochastic systems to track prespecified probability density functions
    Elbeyli, Ozer
    Sun, J. Q.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A-C, 2005, : 1697 - 1702
  • [7] Control of the output probability density functions for a class of nonlinear stochastic systems
    Wang, H
    [J]. ALGORITHMS AND ARCHITECTURES FOR REAL-TIME CONTROL 1998 (AARTC'98), 1998, : 95 - 99
  • [8] Robust control of the output probability density functions for multivariable stochastic systems
    Wang, H
    [J]. PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 1305 - 1310
  • [9] Regulatory control design for stochastic processes: Shaping the probability density function
    Forbes, MG
    Forbes, JF
    Guay, M
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 3998 - 4003
  • [10] Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions
    Lei, Youming
    Zheng, Fan
    [J]. CHAOS, 2016, 26 (12)