Decentralized Computation Offloading and Resource Allocation in MEC by Deep Reinforcement Learning

被引:0
|
作者
Liang, Yeteng [1 ]
He, Yejun [1 ]
Zhong, Xiaoxu [1 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Guangdong Engn Res Ctr Base Stn Antennas & Propag, Shenzhen Key Lab Antennas & Propagat, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
MEC; offloading proportion; power allocation; deep deterministic policy gradient (DDPG); deep Q network (DQN);
D O I
10.1109/iccc49849.2020.9238942
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mobile edge computing (MEC) as a promising technology to relieve edge user equipment (UE) computing pressure by offloading part of a task, is able to reduce the execution delay and energy consumption effectively, and improve the quality of computation experience for mobile users. Nevertheless, we are facing a challenge of design of computation offloading and resource allocation strategy on a part of a task offloaded to MEC server. A task is divided into two sub-tasks firstly. Then one of the two sub-tasks is executed locally, and the other will be offloaded to MEC server that is located near the base station (BS). Based on dynamic offloading and resource allocation strategy, the best offloading proportion of a task, local calculation power and transmission power are investigated by deep reinforcement learning (DRL). In this paper, we propose two DRL-based approaches, which are named as deep Q network (DQN) and deep deterministic policy gradient (DDPG), to minimize the weighted sum cost including execution delay and energy consumption of UE. DQN and DDPG can deal with large scale state spaces and learn efficient offloading proportion of task and power allocation independently at each UE. Simulation results demonstrate that each UE can learn the effective execution policies, and the proposed schemes achieve a significant reduction in the sum cost of task compared with other traditional baselines.
引用
下载
收藏
页码:244 / 249
页数:6
相关论文
共 50 条
  • [1] Deep Reinforcement Learning based Computation Offloading and Resource Allocation for MEC
    Li, Ji
    Gao, Hui
    Lv, Tiejun
    Lu, Yueming
    2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2018,
  • [2] Computation Offloading and Resource Allocation in NOMA-MEC: A Deep Reinforcement Learning Approach
    Shang, Ce
    Sun, Yan
    Luo, Hong
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15464 - 15476
  • [3] Joint Optimization for MEC Computation Offloading and Resource Allocation in IoV Based on Deep Reinforcement Learning
    Wang, Jian
    Wang, Yancong
    Ke, Hongchang
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [4] Computation offloading and resource allocation strategy based on deep reinforcement learning
    Zeng F.
    Zhang Z.
    Chen Z.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (07): : 124 - 135
  • [5] Deep Reinforcement Learning Aided Computation Offloading and Resource Allocation for IoT
    Gong, Yongkang
    Wang, Jingjing
    Nie, Tianzheng
    2020 IEEE COMPUTING, COMMUNICATIONS AND IOT APPLICATIONS (COMCOMAP), 2021,
  • [6] Federated Deep Reinforcement Learning for Multimedia Task Offloading and Resource Allocation in MEC Networks
    Zhang, Rongqi
    Pan, Chunyun
    Wang, Yafei
    Yao, Yuanyuan
    Li, Xuehua
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2024, E107B (06) : 446 - 457
  • [7] Deep Reinforcement Learning Based Joint Partial Computation Offloading and Resource Allocation in Mobility-Aware MEC System
    Luyao Wang
    Guanglin Zhang
    China Communications, 2022, 19 (08) : 85 - 99
  • [8] Deep Reinforcement Learning Based Joint Partial Computation Offloading and Resource Allocation in Mobility-Aware MEC System
    Wang, Luyao
    Zhang, Guanglin
    CHINA COMMUNICATIONS, 2022, 19 (08) : 85 - 99
  • [9] Computation Offloading with Resource Allocation Based on DDPG in MEC
    Moon, Sungwon
    Lim, Yujin
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2024, 20 (02): : 226 - 238
  • [10] Federated Deep Reinforcement Learning for Online Task Offloading and Resource Allocation in WPC-MEC Networks
    Zang, Lianqi
    Zhang, Xin
    Guo, Boren
    IEEE ACCESS, 2022, 10 : 9856 - 9867