Federated Deep Reinforcement Learning for Multimedia Task Offloading and Resource Allocation in MEC Networks

被引:1
|
作者
Zhang, Rongqi [1 ,2 ]
Pan, Chunyun [1 ,2 ]
Wang, Yafei [1 ,2 ]
Yao, Yuanyuan [1 ,2 ]
Li, Xuehua [1 ,2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Minist Informat Ind, Key Lab Informat & Commun Syst, Beijing 100101, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Minist Educ, Key Lab Modern Measurement & Control Technol, Beijing 100101, Peoples R China
关键词
multimedia transmission; computing offloading; resource allocation; federated learning; deep reinforcement learning; EDGE; IOT;
D O I
10.23919/transcom.2023EBP3116
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The With maturation of 5G technology in recent years, multimedia services such as live video streaming and online games on the Internet have flourished. These multimedia services frequently require low latency, which pose a significant challenge to compute the high latency requirements multimedia tasks. Mobile edge computing (MEC), is considered a key technology solution to address the above challenges. It offloads computation-intensive tasks to edge servers by sinking mobile nodes, which reduces task execution latency and relieves computing pressure on multimedia devices. In order to use MEC paradigm reasonably and efficiently, resource allocation has become a new challenge. In this paper, we focus on the multimedia tasks which need to be uploaded and processed in the network. We set the optimization problem with the goal of minimizing the latency and energy consumption required to perform tasks in multimedia devices. To solve the complex and non -convex problem, we formulate the optimization problem as a distributed deep reinforcement learning (DRL) problem and propose a federated Dueling deep Q -network (DDQN) based multimedia task offloading and resource allocation algorithm (FDRL-DDQN). In the algorithm, DRL is trained on the local device, while federated learning (FL) is responsible for aggregating and updating the parameters from the trained local models. Further, in order to solve the not identically and independently distributed (non-IID) data problem of multimedia devices, we develop a method for selecting participating federated devices. The simulation results show that the FDRL-DDQN algorithm can reduce the total cost by 31.3% compared to the DQN algorithm when the task data is 1000 kbit, and the maximum reduction can be 35.3% compared to the traditional baseline algorithm.
引用
收藏
页码:446 / 457
页数:12
相关论文
共 50 条
  • [1] Federated Deep Reinforcement Learning for Online Task Offloading and Resource Allocation in WPC-MEC Networks
    Zang, Lianqi
    Zhang, Xin
    Guo, Boren
    [J]. IEEE ACCESS, 2022, 10 : 9856 - 9867
  • [2] Deep Reinforcement Learning-based Task Offloading and Resource Allocation in MEC-enabled Wireless Networks
    Engidayehu, Seble Birhanu
    Mahboob, Tahira
    Chung, Min Young
    [J]. 2022 27TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS (APCC 2022): CREATING INNOVATIVE COMMUNICATION TECHNOLOGIES FOR POST-PANDEMIC ERA, 2022, : 226 - 230
  • [3] Task Offloading and Resource Allocation for Fog Computing in NG Wireless Networks: A Federated Deep Reinforcement Learning Approach
    Su, Chan
    Wei, Jianguo
    Lin, Deyu
    Kong, Linghe
    Guan, Yong Liang
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (04): : 6802 - 6816
  • [4] Decentralized Computation Offloading and Resource Allocation in MEC by Deep Reinforcement Learning
    Liang, Yeteng
    He, Yejun
    Zhong, Xiaoxu
    [J]. 2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2020, : 244 - 249
  • [5] Deep Reinforcement Learning based Computation Offloading and Resource Allocation for MEC
    Li, Ji
    Gao, Hui
    Lv, Tiejun
    Lu, Yueming
    [J]. 2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2018,
  • [6] Federated deep reinforcement learning for task offloading and resource allocation in mobile edge computing-assisted vehicular networks
    Zhao, Xu
    Wu, Yichuan
    Zhao, Tianhao
    Wang, Feiyu
    Li, Maozhen
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 229
  • [7] Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Industrial IoT in MEC Federation System
    Do, Huong Mai
    Tran, Tuan Phong
    Yoo, Myungsik
    [J]. IEEE ACCESS, 2023, 11 : 83150 - 83170
  • [8] Multiagent Deep Reinforcement Learning for Task Offloading and Resource Allocation in Cybertwin-Based Networks
    Hou, Wenjing
    Wen, Hong
    Song, Huanhuan
    Lei, Wenxin
    Zhang, Wei
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (22) : 16256 - 16268
  • [9] Computation Offloading and Resource Allocation in NOMA-MEC: A Deep Reinforcement Learning Approach
    Shang, Ce
    Sun, Yan
    Luo, Hong
    Guizani, Mohsen
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15464 - 15476
  • [10] Task offloading, load balancing, and resource allocation in MEC networks
    Li, S. L.
    Du, J. B.
    Zhai, D. S.
    Chu, X. L.
    Yu, F. R.
    [J]. IET COMMUNICATIONS, 2020, 14 (09) : 1451 - 1458