Maximum cuts and judicious partitions in graphs without short cycles

被引:60
|
作者
Alon, N [1 ]
Bollobás, B
Krivelevich, M
Sudakov, B
机构
[1] Inst Adv Study, Princeton, NJ 08540 USA
[2] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, Israel
[3] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[4] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[5] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
[6] Inst Adv Study, Princeton, NJ 08540 USA
关键词
D O I
10.1016/S0095-8956(03)00036-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the bipartite cut and the judicious partition problems in graphs of girth at least 4. For the bipartite cut problem we show that every graph G with nt edges, whose shortest cycle has length at least r greater than or equal to 4, has a bipartite subgraph with at least (m)(2) over bar + c(r)m(r)(r+1) over bar edges. The order of the error term in this result is shown to be optimal for r = 5 thus settling a special case of a conjecture of Erdos. (The result and its optimality for another special case, r = 4, were already known.) For judicious partitions, we prove a general result as follows: if a graph G = (V, E) with m edges has a bipartite cut of size (m)(2) over bar + delta, then there exists a partition V = V-1 boolean OR V-2 such that both parts V-1, V-2 span at most (m)(4) over bar (1 - o(1))(delta)(2) over bar + O(rootm) edges for the case delta = o(m), and at most ((1)(4) over bar - Ohm(1))m edges for delta = Ohm(m). This enables one to extend results for the bipartite cut problem to the corresponding ones for judicious partitioning. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:329 / 346
页数:18
相关论文
共 50 条
  • [21] COLORINGS OF GRAPHS WITHOUT SHORT CYCLES
    MULLER, V
    DISCRETE MATHEMATICS, 1979, 26 (02) : 165 - 176
  • [22] On the maximum number of odd cycles in graphs without smaller odd cycles
    Grzesik, Andrzej
    Kielak, Bartlomiej
    JOURNAL OF GRAPH THEORY, 2022, 99 (02) : 240 - 246
  • [23] ON THE MAXIMUM NUMBER OF ODD CYCLES IN GRAPHS WITHOUT SMALLER ODD CYCLES
    Grzesik, A.
    Kielak, B.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 755 - 758
  • [24] The maximum number of cliques in graphs without long cycles
    Luo, Ruth
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 128 : 219 - 226
  • [25] Maximum bisections of graphs without cycles of length 4
    Rao, Mengjiao
    Hou, Jianfeng
    Zeng, Qinghou
    DISCRETE MATHEMATICS, 2022, 345 (08)
  • [26] Choosability of Toroidal Graphs Without Short Cycles
    Cai, Leizhen
    Wang, Weifan
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2010, 65 (01) : 1 - 15
  • [27] TOUGH RAMSEY GRAPHS WITHOUT SHORT CYCLES
    ALON, N
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1995, 4 (03) : 189 - 195
  • [28] Tough Ramsey graphs without short cycles
    J Algebraic Combinatorics, 3 (189):
  • [29] A note on embedding graphs without short cycles
    Görlich, A
    Pilsniak, M
    Wozniak, M
    Ziolo, IA
    DISCRETE MATHEMATICS, 2004, 286 (1-2) : 75 - 77
  • [30] APPROXIMATING MAXIMUM SUBGRAPHS WITHOUT SHORT CYCLES
    Kortsarz, Guy
    Langberg, Michael
    Nutov, Zeev
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (01) : 255 - 269