Geometric quench and nonequilibrium dynamics of fractional quantum Hall states

被引:26
|
作者
Liu, Zhao [1 ,2 ,3 ]
Gromov, Andrey [4 ,5 ,6 ]
Papic, Zlatko [7 ]
机构
[1] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, Arnimallee 14, D-14195 Berlin, Germany
[3] Free Univ Berlin, Inst Theoret Phys, Arnimallee 14, D-14195 Berlin, Germany
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[6] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
[7] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
AREA-PRESERVING DIFFEOMORPHISMS; LOWEST-LANDAU-LEVEL; FIELD-THEORY; W-INFINITY; EXCITATIONS; FERMIONS; FLUIDS; PARTICLES; SYSTEMS; BOSONS;
D O I
10.1103/PhysRevB.98.155140
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a quench of the geometry of Landau level orbitals as a probe of nonequilibrium dynamics of fractional quantum Hall (FQH) states. We show that such geometric quenches induce coherent many-body dynamics of neutral degrees of freedom of FQH fluids. The simplest case of mass anisotropy quench can be experimentally implemented as a sudden tilt of the magnetic field, and the resulting dynamics reduces to the harmonic motion of the spin-2 "graviton" mode, i.e., the long-wavelength limit of the Girvin-MacDonald-Platzman magnetoroton. We derive an analytical description of the graviton dynamics using the bimetric theory of FQH states and find agreement with exact numerical simulations at short times. We show that certain types of geometric quenches excite higher-spin collective modes, thus establishing their existence in a microscopic model and motivating an extension of geometric theories of FQH states.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Universal nonequilibrium states at the fractional quantum Hall edge
    Levkivskyi, Ivan P.
    [J]. PHYSICAL REVIEW B, 2016, 93 (16)
  • [2] Quench Dynamics of Collective Modes in Fractional Quantum Hall Bilayers
    Liu, Zhao
    Balram, Ajit C.
    Papic, Zlatko
    Gromov, Andrey
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (07)
  • [3] Anisotropy and quench dynamics of quasiholes in fractional quantum Hall liquids
    Han, Chao
    Liu, Zhao
    [J]. PHYSICAL REVIEW B, 2022, 105 (04)
  • [4] Resolving geometric excitations of fractional quantum Hall states
    Liu, Yang
    Zhao, Tongzhou
    Xiang, T.
    [J]. Physical Review B, 110 (19):
  • [5] Nonequilibrium fractional Hall response after a topological quench
    Unal, F. Nur
    Mueller, Erich J.
    Oktel, M. O.
    [J]. PHYSICAL REVIEW A, 2016, 94 (05)
  • [6] Anyonic braiding via quench dynamics in fractional quantum Hall liquids
    Li, Jie
    Ye, Dan
    Jiang, Chen-Xin
    Jiang, Na
    Wan, Xin
    Hu, Zi-Xiang
    [J]. PHYSICAL REVIEW B, 2022, 105 (19)
  • [7] Anyonic braiding via quench dynamics in fractional quantum Hall liquids
    Li, Jie
    Ye, Dan
    Jiang, Chen-Xin
    Jiang, Na
    Wan, Xin
    Hu, Zi-Xiang
    [J]. arXiv, 2022,
  • [8] Probing Geometric Excitations of Fractional Quantum Hall States on Quantum Computers
    Kirmani, Ammar
    Bull, Kieran
    Hou, Chang-Yu
    Saravanan, Vedika
    Saeed, Samah Mohamed
    Papic, Zlatko
    Rahmani, Armin
    Ghaemi, Pouyan
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (05)
  • [9] Geometric quench in the fractional quantum Hall effect: Exact solution in quantum Hall matrix models and comparison with bimetric theory
    Lapa, Matthew F.
    Gromov, Andrey
    Hughes, Taylor L.
    [J]. PHYSICAL REVIEW B, 2019, 99 (07)
  • [10] Remnant Geometric Hall Response in a Quantum Quench
    Wilson, Justin H.
    Song, Justin C. W.
    Refael, Gil
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (23)