Nonequilibrium fractional Hall response after a topological quench

被引:29
|
作者
Unal, F. Nur [1 ,2 ]
Mueller, Erich J. [1 ]
Oktel, M. O. [2 ]
机构
[1] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
[2] Bilkent Univ, Dept Phys, TR-06800 Ankara, Turkey
关键词
BOSE-EINSTEIN CONDENSATE; ULTRACOLD; INSULATORS; IMPURITY; ATOMS;
D O I
10.1103/PhysRevA.94.053604
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We theoretically study the Hall response of a lattice system following a quench where the topology of a filled band is suddenly changed. In the limit where the physics is dominated by a single Dirac cone, we find that the change in the Hall conductivity is two-thirds of the quantum of conductivity. We explore this universal behavior in the Haldane model and discuss cold-atom experiments for its observation. Beyond the linear response, the Hall effect crosses over from fractional to integer values. We investigate finite-size effects and the role of harmonic confinement.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Geometric quench and nonequilibrium dynamics of fractional quantum Hall states
    Liu, Zhao
    Gromov, Andrey
    Papic, Zlatko
    [J]. PHYSICAL REVIEW B, 2018, 98 (15)
  • [2] Quench Dynamics of Collective Modes in Fractional Quantum Hall Bilayers
    Liu, Zhao
    Balram, Ajit C.
    Papic, Zlatko
    Gromov, Andrey
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (07)
  • [3] Anisotropy and quench dynamics of quasiholes in fractional quantum Hall liquids
    Han, Chao
    Liu, Zhao
    [J]. PHYSICAL REVIEW B, 2022, 105 (04)
  • [4] Universal nonequilibrium states at the fractional quantum Hall edge
    Levkivskyi, Ivan P.
    [J]. PHYSICAL REVIEW B, 2016, 93 (16)
  • [5] Remnant Geometric Hall Response in a Quantum Quench
    Wilson, Justin H.
    Song, Justin C. W.
    Refael, Gil
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (23)
  • [6] Topological Quantization of Fractional Quantum Hall Conductivity
    Miller, J.
    Zubkov, M. A.
    [J]. SYMMETRY-BASEL, 2022, 14 (10):
  • [7] Topological excitation in the fractional quantum Hall system
    Duan, YS
    Zhang, PM
    Zhang, H
    [J]. PHYSICS LETTERS A, 2001, 291 (4-5) : 296 - 300
  • [8] Topological invariants for fractional quantum hall states
    Gurarie, V.
    Essin, A. M.
    [J]. JETP LETTERS, 2013, 97 (04) : 233 - 238
  • [9] Topological invariants for fractional quantum hall states
    V. Gurarie
    A. M. Essin
    [J]. JETP Letters, 2013, 97 : 233 - 238
  • [10] Dynamical topological invariant after a quantum quench
    Yang, Chao
    Li, Linhu
    Chen, Shu
    [J]. PHYSICAL REVIEW B, 2018, 97 (06)