Bismuth-mesoporous silica-based phase change materials for thermal energy storage

被引:8
|
作者
Lincu, Daniel [1 ,2 ]
Ionita, Simona [2 ]
Trica, Bogdan [3 ]
Culita, Daniela C. [3 ]
Matei, Cristian [2 ]
Berger, Daniela [2 ]
Mitran, Raul-Augustin [1 ]
机构
[1] Romanian Acad, Ilie Murgulescu Inst Phys Chem, 202 Splaiul Indepedentei, Bucharest 060021, Romania
[2] Univ Politehn Bucuresti, Fac Appl Chem & Mat Sci, 1-7 Polizu St, Bucharest 011061, Romania
[3] Natl Inst Res & Dev Chem & Petrochemistry ICECHIM, 202 Spl Independentei, Bucharest 060021, Romania
关键词
Mesoporous silica; Metallic phase change material; Thermal energy storage; Bismuth; TUNABLE MELTING TEMPERATURE; CONDUCTIVITY; COMPOSITES; HYSTERESIS; POROSITY; SHELL;
D O I
10.1016/j.apmt.2022.101663
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Effective heat storage at temperatures above 200 degrees C enables large scale, concentrated solar thermal energy storage or heating applications. Metals can be used for latent heat storage, as they provide high volumetric energy densities at low cost. The volume change during transition limits their stability, but it can be overcome through encapsulation or impregnation into porous matrices. We report the first study on Bismuth-based phase change materials using mesoporous silica matrices or silica shells. High metal fractions (50-70% wt.) were obtained. The metal phase form sub-micron sized domains, with good dispersion inside the silica matrix. Samples obtained by encapsulation show low enthalpy and reliability. High enthalpy values (22-32 Jg(-1)), comparable to that of Bi particles were obtained for samples containing mesoporous silica. These composites exhibit good thermal reliability and shape-stability above the metal melting point, in contrast to Bi particles, which show molten metal leakage. Nanoconfinement of the metal phase decreases its melting point by 1-3 degrees C and its heat of fusion by less than 1%. The good heat storage capacity of composites containing 70% wt. Bi could be explained by a reduction in metal oxidation, caused by the presence of the mesoporous silica matrix.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Advancement in phase change materials for thermal energy storage applications
    Kant, Karunesh
    Shukla, A.
    Sharma, Atul
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 172 : 82 - 92
  • [42] Phase change materials for thermal management and energy storage: A review
    Lawag, Radhi Abdullah
    Ali, Hafiz Muhammad
    Journal of Energy Storage, 2022, 55
  • [43] LAYOUT OF PHASE CHANGE MATERIALS IN A THERMAL ENERGY STORAGE SYSTEM
    Khan, Habeeb Ur Rahman
    Aldoss, Taha K.
    Rahman, Muhammad M.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 6B, 2019,
  • [44] Study of Thermal Energy Storage using Phase Change Materials
    Paul, Dobrescu
    Ionescu, Constantin
    Necula, Horia
    2017 8TH INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT (CIEM), 2017, : 162 - 166
  • [45] Review on thermal energy storage with phase change materials and applications
    Sharma, Atul
    Tyagi, V. V.
    Chen, C. R.
    Buddhi, D.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2009, 13 (02): : 318 - 345
  • [46] Polyols as phase change materials for surplus thermal energy storage
    Gunasekara, Saman Nimali
    Pan, Ruijun
    Chiu, Justin Ningwei
    Martin, Viktoria
    APPLIED ENERGY, 2016, 162 : 1439 - 1452
  • [47] Experimental study on the phase change and thermal properties of paraffin/carbon materials based thermal energy storage materials
    Liu, Chenzhen
    Zhang, Xuan
    Lv, Peizhao
    Li, Yimin
    Rao, Zhonghao
    PHASE TRANSITIONS, 2017, 90 (07) : 717 - 731
  • [48] Bio-based phase change materials for thermal energy storage and release: A review
    Rashid, Farhan Lafta
    Al-Obaidi, Mudhar A.
    Dhaidan, Nabeel S.
    Hussein, Ahmed Kadhim
    Ali, Bagh
    Hamida, Mohamed Bechir Ben
    Younis, Obai
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [49] Aluminum and silicon based phase change materials for high capacity thermal energy storage
    Wang, Zhengyun
    Wang, Hui
    Li, Xiaobo
    Wang, Dezhi
    Zhang, Qinyong
    Chen, Gang
    Ren, Zhifeng
    APPLIED THERMAL ENGINEERING, 2015, 89 : 204 - 208
  • [50] Simulation Analysis of Thermal Storage Process of Phase Change Energy Storage Materials
    Guan, Biao
    Feng, Yongbao
    Peng, Qingsong
    2018 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION, 2019, 252