Variational iteration method for solving compressible Euler equations

被引:6
|
作者
Zhao Guo-Zhong [1 ]
Yu Xi-Jun [2 ]
Xu Yun [2 ]
Zhu Jiang [3 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
[2] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
[3] MCT, Lab Nacl Comp Cient, BR-25651075 Petropolis, RJ, Brazil
基金
中国国家自然科学基金;
关键词
variational iteration method; compressible Euler equations; approximate analytic solutions; Lagrange multiplier; SOLITARY-WAVE SOLUTIONS; NONLINEAR EVOLUTION-EQUATIONS; EXPLICIT EXACT-SOLUTIONS; BURGERS-TYPE EQUATIONS; AIR OSCILLATOR MODEL; (G'/G)-EXPANSION METHOD; KDV-TYPE; SYSTEM; ORDER; TERMS;
D O I
10.1088/1674-1056/19/7/070203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Solving nonlinear fuzzy differential equations by using fuzzy variational iteration method
    Allahviranloo, T.
    Abbasbandy, S.
    Behzadi, Sh. S.
    SOFT COMPUTING, 2014, 18 (11) : 2191 - 2200
  • [42] Improved variational iteration method for solving a class of nonlinear Fredholm integral equations
    Daliri M.H.
    Saberi-Nadjafi J.
    SeMA Journal, 2019, 76 (1) : 65 - 77
  • [43] Solving nonlinear fuzzy differential equations by using fuzzy variational iteration method
    T. Allahviranloo
    S. Abbasbandy
    Sh. S. Behzadi
    Soft Computing, 2014, 18 : 2191 - 2200
  • [44] Convergence of the variational iteration method for solving multi-delay differential equations
    Yang, Shui-Ping
    Xiao, Ai-Guo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) : 2148 - 2151
  • [45] Variational iteration method for solving non-linear partial differential equations
    Hemeda, A. A.
    CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1297 - 1303
  • [46] A NEW NUMERICAL SCHEME FOR SOLVING THE COMPRESSIBLE EULER EQUATIONS
    DEVUYST, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (07): : 577 - 582
  • [47] Variational iteration technique for solving a system of nonlinear equations
    Noor, Muhammad Aslam
    Waseem, Muhammad
    Noor, Khalida Inayat
    Al-Said, Eisa
    OPTIMIZATION LETTERS, 2013, 7 (05) : 991 - 1007
  • [48] Variational iteration technique for solving a system of nonlinear equations
    Muhammad Aslam Noor
    Muhammad Waseem
    Khalida Inayat Noor
    Eisa Al-Said
    Optimization Letters, 2013, 7 : 991 - 1007
  • [49] An Efficient Numerical Method Based on Variational Iteration Method for Solving the Kuramoto-Sivashinsky Equations
    Hosseini, Alireza
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (04): : 143 - 152
  • [50] The variational iteration method: A highly promising method for solving the system of integro-differential equations
    Saberi-Nadjafi, Jafar
    Tamamgar, Mohamadreza
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (02) : 346 - 351