Asymptotic Properties of Generalized Multivariate Rank Statistics

被引:0
|
作者
Christoph, Gerd [2 ]
Malov, Sergey V. [1 ,3 ]
机构
[1] St Petersburg Electrotech Univ, Dept Math, St Petersburg 197376, Russia
[2] Univ Magdeburg, Fac Math, D-39106 Magdeburg, Germany
[3] St Petersburg State Univ, Fac Biol & Soil Sci, Lab Bioinformat, St Petersburg, Russia
关键词
Independent censoring; Kaplan-Meier estimator; Linear rank statistics; Multivariate rank statistics; Right-censored data; NONPARAMETRIC TESTS; ORDER-STATISTICS; INDEPENDENCE; DISTRIBUTIONS; ESTIMATORS; NORMALITY;
D O I
10.1080/03610926.2011.558662
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article discusses generalization of the well-known multivariate rank statistics under right-censored data case. Empirical process representation used to get the generalization. The marginal distribution functions are estimated by Kaplan-Meier estimators. Sufficient conditions for asymptotic normality of the generalized multivariate rank statistics under independently right censored data are specified. Several auxiliary results on sup-norm convergence of Kaplan-Meier estimators in randomly exhausting regions are given too.
引用
收藏
页码:2133 / 2159
页数:27
相关论文
共 50 条
  • [31] ASYMPTOTIC LINEARITY OF WILCOXON SIGNED-RANK STATISTICS
    ANTILLE, A
    [J]. ANNALS OF STATISTICS, 1976, 4 (01): : 175 - 186
  • [32] A new methodology to rank projects using multivariate statistics
    de Oliveira, Karlson B.
    de Oliveira, Josyleuda Melo Moreira
    Filho, Raimir Holanda
    Belchior, Arnaldo D.
    [J]. 2007 INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE MANAGEMENT, VOLS 1-3, 2007, : 351 - +
  • [33] ROBUST CHANGEPOINT DETECTION BASED ON MULTIVARIATE RANK STATISTICS
    Lung-Yut-Fong, Alexandre
    Levy-Leduc, Celine
    Cappe, Olivier
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3608 - 3611
  • [34] Serial and nonserial sign-and-rank statistics: Asymptotic representation and asymptotic normality
    Hallin, M
    Vermandele, C
    Werker, B
    [J]. ANNALS OF STATISTICS, 2006, 34 (01): : 254 - 289
  • [35] On multivariate order statistics: Asymptotic theory and computing moments
    Barakat, H. M.
    Nigm, E. M.
    [J]. KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2012, 39 (1A): : 113 - 127
  • [36] ASYMPTOTIC INDEPENDENCE OF COMPONENTS OF MULTIVARIATE EXTREME ORDER STATISTICS
    MIKHAILOV, VG
    [J]. TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1974, 19 (04): : 849 - 853
  • [37] THE ASYMPTOTIC-DISTRIBUTION OF GENERALIZED RENYI STATISTICS
    MASON, DM
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 1985, 48 (1-4): : 315 - 323
  • [38] Multivariate Dispersive Ordering of Generalized Order Statistics
    Chen, Jing
    Hu, Taizhong
    [J]. JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2007, 6 (01): : 61 - 75
  • [39] Multivariate dependence of spacings of generalized order statistics
    Burkschat, M.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (06) : 1093 - 1106
  • [40] ASYMPTOTIC DISTRIBUTIONS OF RANK STATISTICS IN THE CHANGE-POINT PROBLEM
    LOMBARD, F
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 1983, 17 (01) : 83 - 105