On Higher-Order SzegA Theorems with a Single Critical Point of Arbitrary Order

被引:8
|
作者
Lukic, Milivoje [1 ]
机构
[1] Rice Univ, 6100 Main St,Math MS 136, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
Szego theorem; Absolutely continuous spectrum; Decaying potential; ABSOLUTELY CONTINUOUS-SPECTRUM; POSITIVE HARMONIC-FUNCTIONS; ORTHOGONAL POLYNOMIALS; JACOBI MATRICES; SUM-RULES; SCHRODINGER-OPERATORS;
D O I
10.1007/s00365-015-9320-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the following higher-order Szego theorem: If a measure on the unit circle has absolutely continuous part w(theta) and Verblunsky coefficients a with square-summable variation, then for any positive integer m, integral(1 - cos theta)(m) log w(theta)d theta is finite if and only if alpha is an element of l(2m+2). This is the first known equivalence result of this kind in the regime of very slow decay, i. e., with l(p) conditions with arbitrarily large p. The usual difficulty of controlling higher-order sum rules is avoided by a new test sequence approach.
引用
收藏
页码:283 / 296
页数:14
相关论文
共 50 条
  • [21] Superposition of Solitons with Arbitrary Parameters for Higher-order Equations
    Ankiewicz, A.
    Chowdury, A.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (07): : 647 - 656
  • [22] CRITICAL-POINT OF HIGHER-ORDER IN CYCLOHEXANE-AMMONIA-WATER SYSTEM
    EFREMOVA, GD
    PRYANIKO.RO
    PLENKINA, RM
    ZHURNAL FIZICHESKOI KHIMII, 1973, 47 (03): : 609 - 612
  • [23] Higher-order moments at the critical point of the Ziff-Gulari-Barshad model
    Leite, VS
    Hoenicke, GL
    Figueiredo, W
    PHYSICAL REVIEW E, 2001, 64 (03): : 3 - 361043
  • [24] HIGHER-ORDER PROPERTIES OF A STATIONARY POINT PROCESS
    MCFADDEN, JA
    WEISSBLUTH, W
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1963, 25 (02) : 413 - &
  • [25] EXPONENTS FOR CRITICAL-POINTS OF HIGHER-ORDER
    WEGNER, FJ
    PHYSICS LETTERS A, 1975, 54 (01) : 1 - 2
  • [26] HIGHER-ORDER CRITICAL PHENOMENA IN TERNARY SYSTEMS
    EFREMOVA, GD
    SHVARTZ, AV
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY,USSR, 1969, 43 (07): : 968 - &
  • [27] A CONSISTENT HIGHER-ORDER THEORY WITHOUT A (HIGHER-ORDER) MODEL
    FORSTER, T
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1989, 35 (05): : 385 - 386
  • [28] CALCULATION OF HIGHER-ORDER SENSITIVITIES AND HIGHER-ORDER SENSITIVITY INVARIANTS
    GEHER, K
    SOLYMOSI, J
    PERIODICA POLYTECHNICA-ELECTRICAL ENGINEERING, 1972, 16 (03): : 325 - 330
  • [29] EXISTENCE AND UNIQUENESS THEOREMS FOR HIGHER-ORDER BOUNDARY VALUE PROBLEMS
    万阿英
    蒋达清
    Annals of Differential Equations, 2003, (04) : 547 - 551
  • [30] Comparative higher-order risk aversion and higher-order prudence
    Wong, Kit Pong
    ECONOMICS LETTERS, 2018, 169 : 38 - 42