Benchmark for Bimanual Robotic Manipulation of Semi-Deformable Objects

被引:23
|
作者
Chatzilygeroudis, Konstantinos [1 ]
Fichera, Bernardo [1 ]
Lauzana, Ilaria [1 ]
Bu, Fanjun [1 ,2 ]
Yao, Kunpeng [1 ]
Khadivar, Farshad [1 ]
Billard, Aude [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Learning Algorithms & Syst Lab, CH-1015 Lausanne, Switzerland
[2] Johns Hopkins Univ, Baltimore, MD 21218 USA
来源
基金
欧洲研究理事会;
关键词
Performance evaluation and benchmarking; dual arm manipulation; model learning for control; dexterous manipulation; PEG-IN-HOLE; COORDINATION;
D O I
10.1109/LRA.2020.2972837
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We propose a new benchmarking protocol to evaluate algorithms for bimanual robotic manipulation semi-deformable objects. The benchmark is inspired from two real-world applications: (a) watchmaking craftsmanship, and (b) belt assembly in automobile engines. We provide two setups that try to highlight the following challenges: (a) manipulating objects via a tool, (b) placing irregularly shaped objects in the correct groove, (c) handling semi-deformable objects, and (d) bimanual coordination. We provide CAD drawings of the task pieces that can be easily 3D printed to ensure ease of reproduction, and detailed description of tasks and protocol for successful reproduction, as well as meaningful metrics for comparison. We propose four categories of submission in an attempt to make the benchmark accessible to a wide range of related fields spanning from adaptive control, motion planning to learning the tasks through trial-and-error learning.
引用
收藏
页码:2443 / 2450
页数:8
相关论文
共 50 条
  • [11] Robotic Manipulation Planning for Shaping Deformable Linear Objects WithEnvironmental Contacts
    Zhu, Jihong
    Navarro, Benjamin
    Passama, Robin
    Fraisse, Philippe
    Crosnier, Andre
    Cherubini, Andrea
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (01) : 16 - 23
  • [12] Robotic manipulation and sensing of deformable objects in domestic and industrial applications: a survey
    Sanchez, Jose
    Corrales, Juan-Antonio
    Bouzgarrou, Belhassen-Chedli
    Mezouar, Youcef
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2018, 37 (07): : 688 - 716
  • [13] Grasping Deformable Objects in Industry Application: A Comprehensive Review of Robotic Manipulation
    Wang, Yuanyang
    Mahyuddin, Muhammad Nasiruddin
    IEEE ACCESS, 2025, 13 : 33403 - 33423
  • [14] Movement Primitive Diffusion: Learning Gentle Robotic Manipulation of Deformable Objects
    Scheikl, Paul Maria
    Schreiber, Nicolas
    Haas, Christoph
    Freymuth, Niklas
    Neumann, Gerhard
    Lioutikov, Rudolf
    Mathis-Ullrich, Franziska
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (06) : 5338 - 5345
  • [15] Bimanual Handling of Deformable Objects With Hybrid Adhesion
    Han, Amy Kyungwon
    Hajj-Ahmad, Amar
    Cutkosky, Mark R.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 5497 - 5503
  • [16] Performance measures to benchmark the grasping, manipulation, and assembly of deformable objects typical to manufacturing applications
    Kimble, Kenneth
    Albrecht, Justin
    Zimmerman, Megan
    Falco, Joe
    FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [17] Robotic co-manipulation of deformable linear objects for large deformation tasks
    Almaghout, Karam
    Cherubini, Andrea
    Klimchik, Alexandr
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2024, 175
  • [18] Nonprehensile Manipulation of Deformable Objects
    Ruggiero, Fabio
    Petit, Antoine
    Serra, Diana
    Satici, Aykut C.
    Cacace, Jonathan
    Donaire, Alejandro
    Ficuciello, Fanny
    Buonocore, Luca R.
    Fontanelli, Giuseppe Andrea
    Lippiello, Vincenzo
    Villani, Luigi
    Siciliano, Bruno
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 2018, 25 (03) : 83 - 92
  • [19] Modelling 3D semi-deformable tubes in real time
    Klimowicz, A. N. F.
    Mihajlovic, M. D.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 184 (01) : 52 - 62
  • [20] Action Planning for Packing Long Linear Elastic Objects Into Compact Boxes With Bimanual Robotic Manipulation
    Ma, Wanyu
    Zhang, Bin
    Han, Lijun
    Huo, Shengzeng
    Wang, Hesheng
    Navarro-Alarcon, David
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2023, 28 (03) : 1718 - 1729