Drought modelling by standard precipitation index (SPI) in a semi-arid climate using deep learning method: long short-term memory

被引:37
|
作者
Gorgij, Alireza Docheshmeh [1 ]
Alizamir, Meysam [2 ]
Kisi, Ozgur [3 ]
Elshafie, Ahmed [4 ,5 ]
机构
[1] Univ Sistan & Baluchestan, Fac Ind & Min Khash, Zahedan, Iran
[2] Islamic Azad Univ, Dept Civil Engn, Hamedan Branch, Hamadan, Hamadan, Iran
[3] Ilia State Univ, Dept Civil Engn, GE-0162 Tbilisi, Georgia
[4] Univ Malaya, Fac Engn, Civil Engn Dept, Kuala Lumpur, Malaysia
[5] United Arab Emirates Univ, Natl Water Ctr, POB 15551, Al Ain, U Arab Emirates
来源
NEURAL COMPUTING & APPLICATIONS | 2022年 / 34卷 / 03期
关键词
Drought forecasting; Standard precipitation index; Deep learning; LSTM; Extra-trees; VAR; MARS; ARTIFICIAL-INTELLIGENCE MODELS; RIVER-BASIN; WAVELET TRANSFORMS; PREDICTION; FRAMEWORK;
D O I
10.1007/s00521-021-06505-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drought modelling is an important issue because it is required for curbing or mitigating its effects, alerting the people to the its consequences, and water resources planning. This study investigates the capability of a deep learning method, long short-term memory (LSTM), in forecasting drought calculated from monthly rainfall data obtained from four stations of Iran. The outcomes of LSTM compared with extra-trees (ET), vector autoregressive approach (VAR) and multivariate adaptive regression spline (MARS) methods in forecasting four drought indices, SPI-3, SPI-6, SPI-9 and SPI-12, taking into account numerical criteria, root-mean-square errors (RMSE), Nash-Sutcliffe efficiency and correlation coefficient together with the visual methods, time variation graphs, scatter plots and Taylor diagrams. The overall results showed that the LSTM method performed superior to the ET, VAR and MARS in forecasting drought based on SPI-3, SPI-6, SPI-9 and SPI-12. The RMSE of ET, VAR and MARS was improved by about 17.1%, 12.8% and 9.6% for SPI-3, by 10.5%, 6.2% and 5% for SPI-6, by 7.3%, 4.1% and 6.2% for SPI-9 and by 22.2%, 27% and 10.6% for SPI-12 using LSTM. The MARS method was ranked as the second best, while the ET provided the worst results in forecasting drought based on SPI.
引用
收藏
页码:2425 / 2442
页数:18
相关论文
共 50 条
  • [41] Deep neural learning techniques with long short-term memory for gesture recognition
    Jain, Deepak Kumar
    Mahanti, Aniket
    Shamsolmoali, Pourya
    Manikandan, Ramachandran
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (20): : 16073 - 16089
  • [42] Deep learning with long short-term memory networks for financial market predictions
    Fischer, Thomas
    Krauss, Christopher
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 270 (02) : 654 - 669
  • [43] Deep Learning with Long Short-Term Memory for Enhancement Myocardial Infarction Classification
    Darmawahyuni, Annisa
    Nurmaini, Siti
    Sukemi
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON INSTRUMENTATION, CONTROL, AND AUTOMATION (ICA), 2019, : 19 - 23
  • [44] Forecasting Water Demand With the Long Short-Term Memory Deep Learning Mode
    Xu, Junhua
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH, 2023, 17 (01)
  • [45] Monitoring flood and drought risks in arid and semi-arid regions using remote sensing data and standardized precipitation index: A case study of Syria
    Abd-Elhamid, Hany F.
    Zelenakova, Martina
    Soakova, Tatiana
    Saleh, O. K.
    El-Dakak, Amr M.
    JOURNAL OF FLOOD RISK MANAGEMENT, 2024, 17 (01):
  • [46] Short-Term Precipitation Prediction for Contiguous United States Using Deep Learning
    Chen, Guoxing
    Wang, Wei-Chyung
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (08)
  • [47] A new deep learning method for meteorological drought estimation based-on standard precipitation evapotranspiration index
    Yalcin, Sercan
    Esit, Musa
    Coban, Onder
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 124
  • [48] Long-term Trend and Variability of China's Arid Climate and Drought Area based on the Standardized Precipitation Index
    Liu Yang
    Jiang Wenlai
    Xiao Bilin
    Gao Mingjie
    Lei Bo
    THIRD INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS 2014), 2014, : 555 - 559
  • [49] Deep learning with regularized robust long- and short-term memory network for probabilistic short-term load forecasting
    Jiang, He
    Zheng, Weihua
    JOURNAL OF FORECASTING, 2022, 41 (06) : 1201 - 1216
  • [50] Forecasting of Day-Ahead Electricity Price Using Long Short-Term Memory-Based Deep Learning Method
    U. Sencan
    G. Soykan
    N. Arica
    Arabian Journal for Science and Engineering, 2022, 47 : 14025 - 14036