Soil Moisture Retrieval From Sentinel-1 Time-Series Data Over Croplands of Northeastern Thailand

被引:12
|
作者
Fan, Dong [1 ]
Zhao, Tianjie [2 ]
Jiang, Xiaoguang [1 ]
Xue, Huazhu [3 ]
Moukomla, Sitthisak [4 ]
Kuntiyawichai, Kittiwet [5 ]
Shi, Jiancheng [6 ]
机构
[1] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100094, Peoples R China
[3] Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo 454000, Henan, Peoples R China
[4] Geoinformat & Space Technol Dev Agcy, Bangkok 10210, Thailand
[5] Khon Kaen Univ, Fac Engn, Khon Kaen 40002, Thailand
[6] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Soil moisture; Backscatter; Soil; Vegetation; Biological system modeling; Synthetic aperture radar; Surface roughness; Sentinel-1; soil moisture; synthetic aperture radar (SAR); water management; MODEL; VEGETATION;
D O I
10.1109/LGRS.2021.3065868
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, we propose a dual-temporal dual-channel (DTDC) algorithm for soil moisture retrieval by using time-series observations from the Sentinel-1 C-band synthetic aperture radar. This algorithm utilizes the ancillary information of vegetation water content derived from optical images and assumes no variation on the surface roughness during the two consecutive radar measurements. Therefore, with the DTDC backscatter observations, four equations could be established using forward models, while three unknowns (the two consecutive soil moisture values and one roughness parameter) could be solved simultaneously by minimizing a cost function. The algorithm was tested with a series of Sentinel-1 dual-channel (VV + VH) data over croplands (sugarcane and cassava) of Northeast Thailand with an upscaling resolution of 1 km. Results show that the proposed algorithm could well capture the temporal change of soil moisture with root-mean-square errors within 0.06 m(3)/m(3) when ignoring days with precipitation, and could achieve a similar spatial pattern of soil moisture as detected from the Soil Moisture Active Passive mission, indicating the Sentinel-1 might be a proper tool for agricultural water management.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Time-Series Retrieval of Soil Moisture Using CYGNSS
    M-Khaldi, Mohammad M.
    Johnson, Joel T.
    O'Brien, Andrew J.
    Balenzano, Anna
    Mattia, Francesco
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4322 - 4331
  • [22] USING SENTINEL-1 DATA FOR MONITORING OF SOIL MOISTURE
    Garkusha, Igor N.
    Hnatushenko, Volodymyr V.
    Vasyliev, Volodymyr V.
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1656 - 1659
  • [23] Time-Series Prediction Approaches to Forecasting Deformation in Sentinel-1 InSAR Data
    Hill, P.
    Biggs, J.
    Ponce-Lopez, V.
    Bull, D.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2021, 126 (03)
  • [24] Evaluation of the Performance of Time-Series Sentinel-1 Data for Discriminating Rock Units
    Lu, Yi
    Yang, Changbao
    Jiang, Qigang
    [J]. REMOTE SENSING, 2021, 13 (23)
  • [25] Time-series co-registration for Sentinel-1 TOPS SAR Data
    Ma, Zhangfeng
    Jiang, Mi
    Ding, Qixuan
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (05): : 634 - 640
  • [26] Retrieval of High-Resolution Soil Moisture through Combination of Sentinel-1 and Sentinel-2 Data
    Ma, Chunfeng
    Li, Xin
    McCabe, Matthew F.
    [J]. REMOTE SENSING, 2020, 12 (14)
  • [27] Soil Moisture Retrieval Using Time-Series Radar Observations Over Bare Surfaces
    Kim, Seung-Bum
    Tsang, Leung
    Johnson, Joel T.
    Huang, Shaowu
    van Zyl, Jakob J.
    Njoku, Eni G.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (05): : 1853 - 1863
  • [28] AN IMPROVED CHANGE DETECTION METHOD FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 AND SMAP DATA
    Jiang, Linghai
    Chen, Yan
    Chen, Yunping
    Lu, Youchun
    Du, Min
    Li, Baihui
    Huang, Xuan
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4466 - 4469
  • [29] Evaluation of Backscattering Models and Support Vector Machine for the Retrieval of Bare Soil Moisture from Sentinel-1 Data
    Ezzahar, Jamal
    Ouaadi, Nadia
    Zribi, Mehrez
    Elfarkh, Jamal
    Aouade, Ghizlane
    Khabba, Said
    Er-Raki, Salah
    Chehbouni, Abdelghani
    Jarlan, Lionel
    [J]. REMOTE SENSING, 2020, 12 (01)
  • [30] Soil Moisture Retrieval and Spatiotemporal Pattern Analysis Using Sentinel-1 Data of Dahra, Senegal
    Liu, Zhiqu
    Li, Pingxiang
    Yang, Jie
    [J]. REMOTE SENSING, 2017, 9 (11):