Uncertainty-reality complementarity and entropic uncertainty relations

被引:7
|
作者
Rudnicki, Lukasz [1 ,2 ]
机构
[1] Max Planck Inst Phys Lichts, Staudtstr 2, D-91058 Erlangen, Germany
[2] Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
关键词
Shannon entropy; quantum reality; entropic uncertainty relations; quantum memory; QUANTUM; FORMULATION; PRINCIPLE;
D O I
10.1088/1751-8121/aaecf5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Reality of quantum observables, a feature of long-standing interest within foundations of quantum mechanics, has recently been quantified and deeply studied by means of entropic measures (Dieguez and Angelo 2018 Phys. Rev. A 97 022107). However, there is no state-independent 'reality trade-off' between non-commuting observables, as in certain systems all observables are real (Bilobran and Angelo 2015 Europhys. Lett. 112 40005). We show that the entropic uncertainty relation in the presence of quantum memory (Berta et al 2010 Nat. Phys. 6 659) perfectly supplements the discussed notion of reality, rendering trade-offs between reality and quantum uncertainty. State-independent complementarity inequalities involving entropic measures of both, uncertainty and reality, for two observables are presented.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] ENTROPIC UNCERTAINTY RELATIONS
    BIALYNICKIBIRULA, I
    [J]. PHYSICS LETTERS A, 1984, 103 (05) : 253 - 254
  • [2] Complementarity and the uncertainty relations
    Björk, G
    Söderholm, J
    Trifonov, A
    Tsegaye, T
    Karlsson, A
    [J]. PHYSICAL REVIEW A, 1999, 60 (03): : 1874 - 1882
  • [3] Experimental investigation of entropic uncertainty relations and coherence uncertainty relations
    Ding, Zhi-Yong
    Yang, Huan
    Wang, Dong
    Yuan, Hao
    Yang, Jie
    Ye, Liu
    [J]. PHYSICAL REVIEW A, 2020, 101 (03)
  • [4] Optimality of entropic uncertainty relations
    Abdelkhalek, Kais
    Schwonnek, Rene
    Maassen, Hans
    Furrer, Fabian
    Duhme, Joerg
    Raynal, Philippe
    Englert, Berthold-Georg
    Werner, Reinhard F.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (06)
  • [5] Additivity of entropic uncertainty relations
    Schwonnek, Rene
    [J]. QUANTUM, 2018, 2
  • [6] ENTROPIC FORMULATION OF UNCERTAINTY RELATIONS
    SRINIVAS, MD
    [J]. PRAMANA, 1985, 25 (04) : 369 - 375
  • [7] Entropic uncertainty relations and their applications
    Coles, Patrick J.
    Berta, Mario
    Tomamichel, Marco
    Wehner, Stephanie
    [J]. REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
  • [8] GENERALIZED ENTROPIC UNCERTAINTY RELATIONS
    MAASSEN, H
    UFFINK, JBM
    [J]. PHYSICAL REVIEW LETTERS, 1988, 60 (12) : 1103 - 1106
  • [9] Majorization entropic uncertainty relations
    Puchala, Zbigniew
    Rudnicki, Lukasz
    Zyczkowski, Karol
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (27)
  • [10] Review on entropic uncertainty relations
    Li Li-Juan
    Ming Fei
    Song Xue-Ke
    Ye Liu
    Wang Dong
    [J]. ACTA PHYSICA SINICA, 2022, 71 (07)