Matrix representation of formal polynomials over max-plus algebra

被引:1
|
作者
Wang, Cailu [1 ]
Tao, Yuegang [2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300130, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Max-plus algebra; formal polynomial; matrix representation; canonical form; factorization; algorithm; LINEAR-SYSTEMS;
D O I
10.1142/S0219498821502169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes the matrix representation of formal polynomials over max-plus algebra and obtains the maximum and minimum canonical forms of a polynomial function by standardizing this representation into a canonical form. A necessary and sufficient condition for two formal polynomials corresponding to the same polynomial function is derived. Such a matrix method is constructive and intuitive, and leads to a polynomial algorithm for factorization of polynomial functions. Some illustrative examples are presented to demonstrate the results.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Max-plus algebra modeling for a public transport system
    Nait-Sidi-Moh, A
    Manier, MA
    El Moudni, A
    Manier, H
    CYBERNETICS AND SYSTEMS, 2005, 36 (02) : 165 - 180
  • [42] Soluble approximation of linear systems in max-plus algebra
    Cechlárová, K
    Cuninghame-Green, RA
    KYBERNETIKA, 2003, 39 (02) : 137 - 141
  • [43] An Efficient Algorithm for Nontrivial Eigenvectors in Max-Plus Algebra
    Umer, Mubasher
    Hayat, Umar
    Abbas, Fazal
    SYMMETRY-BASEL, 2019, 11 (06):
  • [44] EIGENVALUES AND EIGENVECTORS OF LATIN SQUARES IN MAX-PLUS ALGEBRA
    Mufid, Muhammad
    Subiono
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2014, 20 (01) : 37 - 45
  • [45] On The Vectors Associated with the Roots of Max-Plus Characteristic Polynomials
    Yuki Nishida
    Sennosuke Watanabe
    Yoshihide Watanabe
    Applications of Mathematics, 2020, 65 : 785 - 805
  • [46] The Minimizing Vector Theorem in Symmetrized Max-Plus Algebra
    Ozel, Cenap
    Piekosz, Artur
    Wajch, Eliza
    Zekraoui, Hanifa
    JOURNAL OF CONVEX ANALYSIS, 2019, 26 (02) : 661 - 686
  • [47] The max-plus algebra approach to railway timetable design
    Goverde, RMP
    COMPUTERS IN RAILWAYS VI, 1998, 2 : 339 - 350
  • [48] Soluble approximation of linear systems in max-plus algebra
    Cechlárová, K
    Cuninghame-Green, RA
    SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, : 809 - 811
  • [49] On the boolean minimal realization problem in the max-plus algebra
    De Schutter, Bart
    Blondel, Vincent
    de Vries, Remco
    De Moor, Bart
    Systems and Control Letters, 1998, 35 (02): : 69 - 78
  • [50] Interval global optimization problem in max-plus algebra
    Myskova, Helena
    Plavka, Jan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 714 : 45 - 63