Fast Accurate Fish Detection and Recognition of Underwater Images with Fast R-CNN

被引:0
|
作者
Li, Xiu [1 ,2 ]
Shang, Min [1 ,2 ]
Qin, Hongwei [1 ,2 ]
Chen, Liansheng [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Peoples R China
来源
OCEANS 2015 - MTS/IEEE WASHINGTON | 2015年
关键词
Fish detection and recognition; Fast R-CNN; underwater images; deep ConvNets;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This paper aims at detecting and recognizing fish species from underwater images by means of Fast R-CNN (Regions with Convolutional Neural and Networks) features. Encouraged by powerful recognition results achieved by Convolutional Neural Networks (CNNs) on generic VOC and ImageNet dataset, we apply this popular deep ConvNets to domain-specific underwater environment which is more complicated than overland situation, using a new dataset of 24277 ImageCLEF fish images belonging to 12 classes. The experimental results demonstrate the promising performance of our networks. Fast R-CNN improves mean average precision (mAP) by 11.2% relative to Deformable Parts Model (DPM) baseline-achieving a mAP of 81.4%, and detects 80x faster than previous R-CNN on a single fish image.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images
    M. Emin Sahin
    Hasan Ulutas
    Esra Yuce
    Mustafa Fatih Erkoc
    Neural Computing and Applications, 2023, 35 : 13597 - 13611
  • [42] Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images
    Sahin, M. Emin
    Ulutas, Hasan
    Yuce, Esra
    Erkoc, Mustafa Fatih
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (18): : 13597 - 13611
  • [43] A Fast Method for Particle Picking in Cryo-Electron Micrographs based on Fast R-CNN
    Xiao, Yifan
    Yang, Guangwen
    APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2017, 1836
  • [44] Leveraging Ellipsoid Bounding Shapes and Fast R-CNN for Enlarged Perivascular Spaces Detection and Segmentation
    Zabihi, Mariam
    Tangwiriyasakul, Chayanin
    Ingala, Silvia
    Lorenzini, Luigi
    Camarasa, Robin
    Barkhof, Frederik
    de Bruijne, Marleen
    Cardoso, M. Jorge
    Sudre, Carole H.
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2023, PT II, 2024, 14349 : 325 - 334
  • [45] Local Fast R-CNN Flow for Object-Centric Event Recognition in Complex Traffic Scenes
    Gu, Qin
    Yang, Jianyu
    Yan, Wei Qi
    Li, Yanqiang
    Klette, Reinhard
    IMAGE AND VIDEO TECHNOLOGY (PSIVT 2017), 2018, 10799 : 439 - 452
  • [46] Faster R-CNN for Detection of Carotid Plaque on Ultrasound Images
    An, Xiangjing
    Ye, Guoliang
    Zhou, Xiaoan
    Jiao, Zhibin
    Ding, Shangwei
    Xie, Yanhua
    2019 COMPUTING, COMMUNICATIONS AND IOT APPLICATIONS (COMCOMAP), 2019, : 64 - 69
  • [47] Mask R-CNN for Object Detection in Multitemporal SAR Images
    Qian, Yu
    Liu, Qin
    Zhu, Hongming
    Fan, Hongfei
    Du, Bowen
    Liu, Sicong
    2019 10TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2019,
  • [48] Underwater human detection using faster R-CNN with data augmentation
    Dulhare U.N.
    Hussam Ali M.
    Materials Today: Proceedings, 2023, 80 : 1940 - 1945
  • [49] A Lightweight Faster R-CNN for Ship Detection in SAR Images
    Li, Yiding
    Zhang, Shunsheng
    Wang, Wen-Qin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [50] Accelerate proposal generation in R-CNN methods for fast pedestrian extraction
    Wang, Juncheng
    Li, Guiying
    ELECTRONIC LIBRARY, 2019, 37 (03): : 435 - 453