Resolution enhancement of transmission electron microscopy by super-resolution radial fluctuations

被引:0
|
作者
Zhang, Y. [1 ,2 ]
Rouvimov, S. [1 ,3 ]
Yuan, X. [1 ]
Gonzalez-Serrano, K. [1 ]
Seabaugh, A. C. [1 ]
Howard, S. S. [1 ]
机构
[1] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
[2] CALTECH, Andrew & Peggy Cherng Dept Med Engn, Caltech Opt Imaging Lab, Pasadena, CA 91125 USA
[3] Univ Notre Dame, Notre Dame Integrated Imaging Facil, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
IMAGE; LIMIT; NOISE;
D O I
10.1063/1.5128353
中图分类号
O59 [应用物理学];
学科分类号
摘要
Super-resolution fluorescence microscopy techniques have enabled dramatic development in modern biology due to their capability to discern features smaller than the diffraction limit of light. Recently, super-resolution radial fluctuations (SRRF), an analytical approach that is capable of generating super-resolution images easily without the need for specialized hardware or photoswitchable fluorophores, has been presented. While SRRF has only been demonstrated on fluorescence microscopes, in principle, this method can be used to generate super-resolution images on any imaging platforms with intrinsic radial symmetric point spread functions. In this work, we show that SRRF can be utilized to enhance the resolution and quality of transmission electron microscopy (TEM) images. By including an image registration algorithm to correct for sample drift, the SRRF-TEM approach substantially enhances the resolution of TEM images of three different samples acquired with a commercial TEM system. We quantify the resolution improvement in SRRF-TEM and evaluate how SRRF parameters affect the resolution and quality of SRRF-TEM results.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Super-resolution microscopy demystified
    Lothar Schermelleh
    Alexia Ferrand
    Thomas Huser
    Christian Eggeling
    Markus Sauer
    Oliver Biehlmaier
    Gregor P. C. Drummen
    Nature Cell Biology, 2019, 21 : 72 - 84
  • [32] Super-resolution microscopy for nanosensing
    Galbraith, James A.
    Galbraith, Catherine G.
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2011, 3 (03) : 247 - 255
  • [33] Advanced super-resolution microscopy
    Donaldson, Laurie
    MATERIALS TODAY, 2013, 16 (05) : 165 - 165
  • [34] Super-Resolution Fluorescence Microscopy
    Huang, Bo
    Bates, Mark
    Zhuang, Xiaowei
    ANNUAL REVIEW OF BIOCHEMISTRY, 2009, 78 : 993 - 1016
  • [35] Integrated super resolution fluorescence microscopy and transmission electron microscopy
    Mohammadian, Sajjad
    Agronskaia, Alexandra, V
    Blab, Gerhard A.
    van Donselaar, Elly G.
    de Heus, Cecilia
    Liv, Nalan
    Klumperman, Judith
    Gerritsen, Hans C.
    ULTRAMICROSCOPY, 2020, 215 (215)
  • [36] A super-resolution and transmission electron microscopy correlative approach to study intracellular trafficking of nanoparticles
    Andrian, Teodora
    Muela, Yolanda
    Delgado, Lidia
    Albertazzi, Lorenzo
    Pujals, Silvia
    NANOSCALE, 2023, 15 (35) : 14615 - 14627
  • [37] Recent Developments in Correlative Super-Resolution Fluorescence Microscopy and Electron Microscopy
    Jeong, Dokyung
    Kim, Doory
    MOLECULES AND CELLS, 2022, 45 (01) : 41 - 50
  • [38] Radial organization of the nuclear pore complex imaged by super-resolution microscopy
    Szymborska, A. B.
    de Marco, A.
    Briggs, J. A.
    Ellenberg, J.
    MOLECULAR BIOLOGY OF THE CELL, 2011, 22
  • [39] Spatial Resolution of Coherent Cathodoluminescence Super-Resolution Microscopy
    Schefold, Joris
    Meuret, Sophie
    Schilder, Nick
    Coenen, Toon
    Agrawal, Harshal
    Garnett, Erik C.
    Polman, Albert
    ACS PHOTONICS, 2019, 6 (04) : 1067 - 1072
  • [40] Note: Fabrication of resolution target for super-resolution microscopy
    Iketaki, Y.
    Oi, H.
    Bokor, N.
    Kumagai, H.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (08):