Minimal sufficient statistics in location-scale parameter models

被引:1
|
作者
Mattner, L [1 ]
机构
[1] Univ Leeds, Dept Stat, Leeds LS2 9JT, W Yorkshire, England
关键词
characterization; complete sufficient statistics; equivariance; exponential family; independence; infinitely divisible distribution; mean periodic functions; normal distribution; order statistics; transformation model;
D O I
10.2307/3318474
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let f be a probability density on the real line, let n be any positive integer, and assume the condition (R) that log f is locally integrable with respect to Lebesgue measure. Then either log f is almost everywhere equal to a polynomial of degree less than n, or the order statistic of n independent and identically distributed observations from the location-scale parameter model generated by f is minimal sufficient. It follows, subject to (R) and n greater than or equal to 3, that a complete sufficient statistic exists in the normal case only. Also, for f with (R) infinitely divisible but not normal, the order statistic is always minimal sufficient for the corresponding location-scale parameter model. The proof of the main result uses a theorem on the harmonic analysis of translation- and dilation-invariant function spaces, attributable to Leland (1968) and to Schwartz (1947).
引用
收藏
页码:1121 / 1134
页数:14
相关论文
共 50 条
  • [31] Nonparametric additive location-scale models for interval censored data
    Philippe Lambert
    [J]. Statistics and Computing, 2013, 23 : 75 - 90
  • [33] Estimation in nonparametric location-scale regression models with censored data
    Cédric Heuchenne
    Ingrid Van Keilegom
    [J]. Annals of the Institute of Statistical Mathematics, 2010, 62 : 439 - 463
  • [34] Minimax estimators for the lower-bounded scale parameter of a location-scale family of distributions
    Tripathi, Yogesh Mani
    Kumar, Somesh
    Petropoulos, C.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (18) : 9185 - 9193
  • [35] Estimation in nonparametric location-scale regression models with censored data
    Heuchenne, Cedric
    Van Keilegom, Ingrid
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (03) : 439 - 463
  • [36] On stochastic comparisons of minimum order statistics from the location-scale family of distributions
    Hazra, Nil Kamal
    Kuiti, Mithu Rani
    Finkelstein, Maxim
    Nanda, Asok K.
    [J]. METRIKA, 2018, 81 (02) : 105 - 123
  • [37] An optimal L-statistics quantile estimator for a set of location-scale populations
    Li, Ling-Wei
    Lee, Loo-Hay
    Chen, Chun-Hung
    Guo, Bo
    Liu, Ya-Jie
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (10) : 1853 - 1858
  • [38] Optimal Prediction Intervals for Order Statistics Coming from Location-Scale Families
    Nechval, Nicholas A.
    Nechval, Konstantin N.
    Purgailis, Maris
    Rozevskis, Uldis
    [J]. ENGINEERING LETTERS, 2012, 20 (04) : 353 - 362
  • [39] ESTIMATION OF QUANTILES OF LOCATION-SCALE DISTRIBUTIONS BASED ON 2 OR 3 ORDER STATISTICS
    KUBAT, P
    EPSTEIN, B
    [J]. TECHNOMETRICS, 1980, 22 (04) : 575 - 581
  • [40] Simultaneous equivariant estimation of the parameters of matrix scale and matrix location-scale models
    Leo Alexander T.
    Chandrasekar B.
    [J]. Statistical Papers, 2005, 46 (4) : 483 - 507