Global existence of weak solutions for Navier-Stokes-BGK system

被引:13
|
作者
Choi, Young-Pil [1 ]
Yun, Seok-Bae [2 ]
机构
[1] Yonsei Univ, Dept Math, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Vlasov equation; BGK model; incompressible Navier-Stokes equations; spray models; global existence of weak solutions; SEMI-LAGRANGIAN SCHEME; KINETIC-EQUATIONS; CAUCHY-PROBLEM; CLASSICAL-SOLUTIONS; EULER EQUATIONS; MODEL; VLASOV; LIMIT; MOMENTS; CONVERGENCE;
D O I
10.1088/1361-6544/ab6c38
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global well-posedness of a coupled system of kinetic and fluid equations. More precisely, we establish the global existence of weak solutions for Navier-Stokes-BGK system consisting of the BGK model of Boltzmann equation and incompressible Navier-Stokes equations coupled through a drag forcing term. This is achieved by combining weak compactness of the particle interaction operator based on Dunford-Pettis theorem, strong compactness of macroscopic fields of the kinetic part relied on velocity averaging lemma and a high order moment estimate, and strong compactness of the fluid part by Aubin-Lions lemma.
引用
收藏
页码:1925 / 1955
页数:31
相关论文
共 50 条
  • [21] ALMOST SURE EXISTENCE OF GLOBAL WEAK SOLUTIONS FOR SUPERCRITICAL NAVIER-STOKES EQUATIONS
    Nahmod, Andrea R.
    Pavlovic, Natasa
    Staffilani, Gigliola
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (06) : 3431 - 3452
  • [22] A remark on the global existence of weak solutions to the compressible quantum Navier-Stokes equations
    Tang, Tong
    Zhang, Zujin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 255 - 261
  • [23] Global weak solutions of the Navier-Stokes-Fokker-Planck system
    Egorov, S. M.
    Khruslov, E. Ya
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (02) : 212 - 248
  • [24] Global existence of weak solutions for 2D chemotaxis-Navier-Stokes system with fractional diffusion
    Zhang, Xuan
    Lv, Yanxi
    Zhang, Qian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (04) : 4790 - 4830
  • [25] On the Cauchy Problem of the Vlasov-Poisson-BGK System: Global Existence of Weak Solutions
    Xianwen Zhang
    Journal of Statistical Physics, 2010, 141 : 566 - 588
  • [26] On the Cauchy Problem of the Vlasov-Poisson-BGK System: Global Existence of Weak Solutions
    Zhang, Xianwen
    JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (03) : 566 - 588
  • [27] On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations
    E. Feireisl
    A. Novotný
    H. Petzeltová
    Journal of Mathematical Fluid Mechanics, 2001, 3 : 358 - 392
  • [28] Existence of weak solutions for the generalized Navier–Stokes equations with damping
    H. B. de Oliveira
    Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 797 - 824
  • [29] EXISTENCE OF WEAK SOLUTIONS TO p-NAVIER-STOKES EQUATIONS
    Feng, Yuanyuan
    Li, Lei
    Liu, Jian-Guo
    Xu, Xiaoqian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (04): : 1868 - 1890
  • [30] Global existence of weak solutions for the 3D chemotaxis-Navier-Stokes equations
    He, Haibin
    Zhang, Qian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 : 336 - 349