Summation Formulae for Quintic q-Series

被引:1
|
作者
Chu, Wenchang [1 ,2 ]
机构
[1] Zhoukou Normal Univ, Sch Math & Stat, Zhoukou 466001, Peoples R China
[2] Univ Salento, Dept Math & Phys, POB 193, I-73100 Lecce, Italy
关键词
basic hypergeometric series; twisted cubic q-series; quintic q-series; reversal series; Abel's lemma on summation by parts; ABELS METHOD; PARTS; TRANSFORMATION; IDENTITIES; LEMMA; QUINTUPLE; INVERSION; PROOF;
D O I
10.3390/math10132210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By utilizing the modified Abel lemma on summation by parts, we examine a class of quintic q-series, that have close connections to the "twisted cubic q-series". Several remarkable summation and transformation formulae are established. The related reversal series are also reviewed briefly.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] TRANSFORMATION AND REDUCTION FORMULAE FOR DOUBLE q-SERIES OF TYPE Φ2:0;μ2:1;λ
    Jia, Cangzhi
    Zhang, Xiangde
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 195 - 204
  • [22] Knots and q-series
    Andrews, George E.
    RAMANUJAN 125, 2014, 627 : 17 - 24
  • [23] General q-series transformations based on Abel's lemma on summation by parts and their applications
    Xu, Jianan
    Ma, Xinrong
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2024, 30 (05) : 553 - 576
  • [24] Characters and q-series in Q (√2)
    Corson, D
    Favero, D
    Liesinger, K
    Zubairy, S
    JOURNAL OF NUMBER THEORY, 2004, 107 (02) : 392 - 405
  • [25] Summation formulae for q-Watson type 4φ3-series
    Wei, Chuanan
    Gong, Dianxuan
    Li, Jianbo
    DISCRETE MATHEMATICS, 2013, 313 (15) : 1589 - 1593
  • [26] ON THE RADIUS OF CONVERGENCE OF Q-SERIES
    PETRUSKA, G
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1992, 3 (03): : 353 - 364
  • [27] Asymptotic transformations of q-series
    McIntosh, RJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (02): : 412 - 425
  • [28] Certain q-series identities
    Agarwal, Praveen
    Jain, Shilpi
    Choi, Junesang
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (01) : 139 - 146
  • [29] Summation formulae for elliptic hypergeometric series
    Warnaar, SO
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (02) : 519 - 527
  • [30] On q-series and continued fractions
    Mishra, Vishnu Narayan
    Singh, S. N.
    Singh, S. P.
    Yadav, Vijay
    COGENT MATHEMATICS, 2016, 3