Rational Design of a P2-Type Spherical Layered Oxide Cathode for High-Performance Sodium-Ion Batteries

被引:45
|
作者
Xiao, Jun [1 ]
Zhang, Fan [2 ]
Tang, Kaikai [1 ]
Li, Xiao [1 ]
Wang, Dandan [1 ]
Wang, Yong [1 ]
Liu, Hao [1 ,2 ]
Wu, Minghong [1 ]
Wang, Guoxiu [2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Joint Int Lab Environm & Energy Frontier Mat, Shanghai 200444, Peoples R China
[2] Univ Technol Sydney, Fac Sci, Sch Math & Phys Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
基金
澳大利亚研究理事会;
关键词
P2-O2; PHASE-TRANSITION; HIGH-VOLTAGE; SUBSTITUTION;
D O I
10.1021/acscentsci.9b00982
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) have been regarded as the most promising candidates for the next-generation energy storage devices owing to their low price and high abundance. However, the development of SIBs is mainly hindered by the instability of cathode materials. Here, we report a new P2-type manganese-rich cathode material, Na0.66Li0.18Mn0.71Mg0.21Co0.08O2 (P2-NaLiMMCO) with uniform spherical structure prepared via a simple solvothermal method and subsequent solid-state reaction. This P2-NaLiMMCO cathode material with uniform microsize secondary spheres and nanosize primary crystalline particles delivers a high initial discharge capacity of 166 mA h g(-1) and superior capacity retention, which are superior to most previously reported results. The improved stability of the cathode material was further investigated by the in situ X-ray diffraction technique, which suggests an enhanced reversibility of the cathode material during the desodiation/sodiation process. With the superior electrochemical performance and stable structures, this new P2-NaLiMMCO can serve as a practical cathode material for SIBs.
引用
收藏
页码:1937 / 1945
页数:9
相关论文
共 50 条
  • [41] Designing High-Performance Nanostructured P2-type Cathode Based on a Template-free Modified Pechini Method for Sodium-Ion Batteries
    Kaliyappan, Karthikeyan
    Xiao, Wei
    Adair, Keegan R.
    Sham, Tsun-Kong
    Sun, Xueliang
    ACS OMEGA, 2018, 3 (07): : 8309 - 8316
  • [42] Rational Design of a Complete Solid-Solution Reaction P2-Type Na-Ion Layered Oxide Cathode with High Performance
    Gao, Jianxiang
    Guo, Hao
    Jiao, Xuesheng
    Li, Zheng-Yao
    Ma, Xiaobai
    Hu, Xufeng
    Huang, Qinghua
    Sun, Kai
    Chen, Dongfeng
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (11) : 5753 - 5760
  • [43] Layered P2-type Na0.5Ni0.25Mn0.75O2 as a high performance cathode material for sodium-ion batteries
    Manikandan, P.
    Ramasubramonian, D.
    Shaijumon, M. M.
    ELECTROCHIMICA ACTA, 2016, 206 : 199 - 206
  • [44] Effect of lithium doping in P2-Type layered oxide cathodes on the electrochemical performances of Sodium-Ion batteries
    Li, Lijiang
    Su, Gaoqin
    Lu, Chu
    Ma, Xiaobo
    Ma, Ling
    Wang, Hailong
    Cao, Zhijie
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [45] Single-Crystal Growth of P2-Type Layered Oxides with Increased Exposure of {010} Planes for High-Performance Sodium-Ion Batteries
    Zhang, Le
    Huang, Jieyou
    Song, Miaoyan
    Lu, Chen
    Wu, Wenwei
    Wu, Xuehang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (40) : 47037 - 47048
  • [46] A P2@Tunnel Heterostructure Cathode for High-Performance Sodium-Ion Batteries
    Huang, Qun
    Feng, Yiming
    Xu, Sheng
    Xiao, Lei
    He, Pingge
    Ji, Xiaobo
    Wang, Peng
    Zhou, Liangjun
    Wei, Weifeng
    CHEMELECTROCHEM, 2020, 7 (21) : 4383 - 4389
  • [47] A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery
    Xiao, Yao
    Zhu, Yon-Fong
    Yao, Hu-Rong
    Wang, Peng-Fei
    Zhang, Xu-Dong
    Li, Hongliang
    Yang, Xinan
    Gu, Lin
    Li, Yong-Chun
    Wang, Tao
    Yin, Ya-Xia
    Guo, Xiao-Dong
    Zhong, Ben-He
    Guo, Yu-Guo
    ADVANCED ENERGY MATERIALS, 2019, 9 (19)
  • [48] Cycling performance of layered oxide cathode materials for sodium-ion batteries
    Jinpin Wu
    Junhang Tian
    Xueyi Sun
    Weidong Zhuang
    International Journal of Minerals,Metallurgy and Materials, 2024, (07) : 1720 - 1744
  • [49] Mo6+ bifunctional substitution of P2-type manganese oxide for high performance sodium-ion batteries
    Xu, Lincai
    Hu, Qiang
    Ran, Qiwen
    Li, Lei
    Cai, Gan
    Xie, Haijiao
    Liu, Xingquan
    CHEMICAL ENGINEERING JOURNAL, 2024, 493
  • [50] Functional surface modification of P2-type layered Mn-based oxide cathode by thin layer of NASICON for sodium-ion batteries
    Shao, Yuqiu
    Wang, Xinxin
    Li, Bingchen
    Ma, Huirong
    Chen, Jingjing
    Wang, Dajian
    Dong, Chenlong
    Mao, Zhiyong
    ELECTROCHIMICA ACTA, 2023, 442