Improved YOLOv5 Network for Agricultural Pest Detection

被引:0
|
作者
Yu, Yan [1 ]
Sun, Tian [1 ]
Yan, Jin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
关键词
Agricultural pest; YOLOv5; anchor frame; network structure; dataset;
D O I
10.1117/12.2680747
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Agriculture is the source of food, clothing, and the foundation of human existence. In recent years, various countries have been increasing investment in agricultural production and actively carrying out agricultural pest control work. Therefore, how effectively realizing pest identification is a top priority at present. Traditional identification methods have disadvantages, such as time-consuming and laborious, untimely diagnosis, and limited diagnosis range. With the development of modern digital technology, image processing technology develops rapidly, which opens up a new way for pest identification. This paper proposes an improved network model for pest identification using the YOLOv5 target detection algorithm. Firstly, the data sets of pests and diseases are collected and marked. Then, an improved anchor frame size is proposed to make it more suitable for the data set used in this paper. Finally, an improved network structure of YOLOv5 is proposed, which improves the ability of the network to capture characteristic information. The experimental results show that the mean Average Precision (mAP@0.5) of the improved network model reaches 79.7%. At the same time, compared with Faster R-CNN, Dynamic R-CNN, Double-Head R-CNN, YOLOv3, and YOLOv5, the mAP@0.5 is improved by 8.5%, 8.1%, 8.8%, 9.3%, and 3.7% respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Lightweight improved yolov5 model for cucumber leaf disease and pest detection based on deep learning
    Omer, Saman M.
    Ghafoor, Kayhan Z.
    Askar, Shavan K.
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1329 - 1342
  • [42] Lymphocyte Detection Method Based on Improved YOLOv5
    Jiang, Peihe
    Li, Yi
    Liu, Ying
    Lu, Ning
    [J]. IEEE ACCESS, 2024, 12 : 772 - 781
  • [43] Application of improved YOLOV5 in plate defect detection
    Xiong, Chenglong
    Hu, Sanbao
    Fang, Zhigang
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022,
  • [44] Unsafe behaviour detection with the improved YOLOv5 model
    Ying, Li
    Lei, Zhao
    Geng, Junwei
    Hu, Jinhui
    Lei, Ma
    Zhao, Zilong
    [J]. IET CYBER-PHYSICAL SYSTEMS: THEORY & APPLICATIONS, 2024, 9 (01) : 87 - 98
  • [45] Improved YOLOv5 Traffic Sign Detection Algorithm
    Yang, Guoliang
    Yang, Hao
    Yu, Shuaiying
    Wang, Jixiang
    Nie, Ziling
    [J]. Computer Engineering and Applications, 2023, 59 (10) : 262 - 269
  • [46] Lightweight improved yolov5 model for cucumber leaf disease and pest detection based on deep learning
    Saman M. Omer
    Kayhan Z. Ghafoor
    Shavan K. Askar
    [J]. Signal, Image and Video Processing, 2024, 18 : 1329 - 1342
  • [47] Improved Traffic Sign Detection Algorithm for YOLOv5
    Hu, Zhaohua
    Wang, Ying
    [J]. Computer Engineering and Applications, 2023, 59 (01): : 82 - 91
  • [48] Insulator Breakage Detection Based on Improved YOLOv5
    Han, Gujing
    He, Min
    Gao, Mengze
    Yu, Jinyun
    Liu, Kaipei
    Qin, Liang
    [J]. SUSTAINABILITY, 2022, 14 (10)
  • [49] An Improved YOLOv5 Algorithm for Tyre Defect Detection
    Xie, Mujun
    Bian, Heyu
    Jiang, Changhong
    Zheng, Zhong
    Wang, Wei
    [J]. ELECTRONICS, 2024, 13 (11)
  • [50] Pedestrian detection method based on improved YOLOv5
    You, Shangtao
    Gu, Zhengchao
    Zhu, Kai
    [J]. SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)