Association Analysis and Meta-Analysis of Multi-Allelic Variants for Large-Scale Sequence Data

被引:5
|
作者
Jiang, Yu [1 ]
Chen, Sai [2 ]
Wang, Xingyan [1 ]
Liu, Mengzhen [3 ]
Iacono, William G. [4 ]
Hewitt, John K. [5 ]
Hokanson, John E. [6 ]
Krauter, Kenneth [5 ]
Laakso, Markku [7 ,8 ]
Li, Kevin W. [9 ]
Lutz, Sharon M. [10 ]
McGue, Matthew [3 ]
Pandit, Anita [9 ]
Zajac, Gregory J. M. [9 ]
Boehnke, Michael [9 ]
Abecasis, Goncalo R. [9 ]
Vrieze, Scott, I [3 ]
Jiang, Bibo [1 ]
Zhan, Xiaowei [11 ]
Liu, Dajiang J. [1 ]
机构
[1] Penn State Coll Med, Dept Publ Hlth Sci, Hershey, PA 17033 USA
[2] Illumina Inc, 5200 Illuminay Way, San Diego, CA 92122 USA
[3] Univ Minnesota, Dept Psychol, Minneapolis, MN 55454 USA
[4] Univ Minnesota, Dept Psychiat, Minneapolis, MN 55454 USA
[5] Univ Colorado Boulder, Inst Behav Genet, Aurora, CO 80045 USA
[6] Univ Colorado Denver, Sch Publ Hlth, Dept Epidemiol, Aurora, CO 80045 USA
[7] Univ Eastern Finland, Dept Med, Kuopio 70211, Finland
[8] Kuopio Univ Hosp, Kuopio 70211, Finland
[9] Univ Michigan, Ctr Stat Genet, Dept Biostat, Ann Arbor, MI 48109 USA
[10] Univ Colorado, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO 80045 USA
[11] Univ Texas Southwestern Med Ctr Dallas, Quantitat Biomed Res Ctr, Dept Clin Sci, Dallas, TX 75390 USA
关键词
multi-allelic variants; GWAS; meta-analysis; smoking; RARE VARIANTS; GENOTYPE IMPUTATION; GENERAL FRAMEWORK; PROTEIN; RISK; TOOL;
D O I
10.3390/genes11050586
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
There is great interest in understanding the impact of rare variants in human diseases using large sequence datasets. In deep sequence datasets of >10,000 samples, similar to 10% of the variant sites are observed to be multi-allelic. Many of the multi-allelic variants have been shown to be functional and disease-relevant. Proper analysis of multi-allelic variants is critical to the success of a sequencing study, but existing methods do not properly handle multi-allelic variants and can produce highly misleading association results. We discuss practical issues and methods to encode multi-allelic sites, conduct single-variant and gene-level association analyses, and perform meta-analysis for multi-allelic variants. We evaluated these methods through extensive simulations and the study of a large meta-analysis of similar to 18,000 samples on the cigarettes-per-day phenotype. We showed that our joint modeling approach provided an unbiased estimate of genetic effects, greatly improved the power of single-variant association tests among methods that can properly estimate allele effects, and enhanced gene-level tests over existing approaches. Software packages implementing these methods are available online.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease
    Nalls, Mike A.
    Pankratz, Nathan
    Lill, Christina M.
    Do, Chuong B.
    Hernandez, Dena G.
    Saad, Mohamad
    DeStefano, Anita L.
    Kara, Eleanna
    Bras, Jose
    Sharma, Manu
    Schulte, Claudia
    Keller, Margaux F.
    Arepalli, Sampath
    Letson, Christopher
    Edsall, Connor
    Stefansson, Hreinn
    Liu, Xinmin
    Pliner, Hannah
    Lee, Joseph H.
    Cheng, Rong
    Ikram, M. Arfan
    Ioannidis, John P. A.
    Hadjigeorgiou, Georgios M.
    Bis, Joshua C.
    Martinez, Maria
    Perlmutter, Joel S.
    Goate, Alison
    Marder, Karen
    Fiske, Brian
    Sutherland, Margaret
    Xiromerisiou, Georgia
    Myers, Richard H.
    Clark, Lorraine N.
    Stefansson, Kari
    Hardy, John A.
    Heutink, Peter
    Chen, Honglei
    Wood, Nicholas W.
    Houlden, Henry
    Payami, Haydeh
    Brice, Alexis
    Scott, William K.
    Gasser, Thomas
    Bertram, Lars
    Eriksson, Nicholas
    Foroud, Tatiana
    Singleton, Andrew B.
    NATURE GENETICS, 2014, 46 (09) : 989 - +
  • [32] Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes
    Eleftheria Zeggini
    Laura J Scott
    Richa Saxena
    Benjamin F Voight
    Jonathan L Marchini
    Tianle Hu
    Paul IW de Bakker
    Gonçalo R Abecasis
    Peter Almgren
    Gitte Andersen
    Kristin Ardlie
    Kristina Bengtsson Boström
    Richard N Bergman
    Lori L Bonnycastle
    Knut Borch-Johnsen
    Noël P Burtt
    Hong Chen
    Peter S Chines
    Mark J Daly
    Parimal Deodhar
    Chia-Jen Ding
    Alex S F Doney
    William L Duren
    Katherine S Elliott
    Michael R Erdos
    Timothy M Frayling
    Rachel M Freathy
    Lauren Gianniny
    Harald Grallert
    Niels Grarup
    Christopher J Groves
    Candace Guiducci
    Torben Hansen
    Christian Herder
    Graham A Hitman
    Thomas E Hughes
    Bo Isomaa
    Anne U Jackson
    Torben Jørgensen
    Augustine Kong
    Kari Kubalanza
    Finny G Kuruvilla
    Johanna Kuusisto
    Claudia Langenberg
    Hana Lango
    Torsten Lauritzen
    Yun Li
    Cecilia M Lindgren
    Valeriya Lyssenko
    Amanda F Marvelle
    Nature Genetics, 2008, 40 : 638 - 645
  • [33] Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease
    Mike A Nalls
    Nathan Pankratz
    Christina M Lill
    Chuong B Do
    Dena G Hernandez
    Mohamad Saad
    Anita L DeStefano
    Eleanna Kara
    Jose Bras
    Manu Sharma
    Claudia Schulte
    Margaux F Keller
    Sampath Arepalli
    Christopher Letson
    Connor Edsall
    Hreinn Stefansson
    Xinmin Liu
    Hannah Pliner
    Joseph H Lee
    Rong Cheng
    M Arfan Ikram
    John P A Ioannidis
    Georgios M Hadjigeorgiou
    Joshua C Bis
    Maria Martinez
    Joel S Perlmutter
    Alison Goate
    Karen Marder
    Brian Fiske
    Margaret Sutherland
    Georgia Xiromerisiou
    Richard H Myers
    Lorraine N Clark
    Kari Stefansson
    John A Hardy
    Peter Heutink
    Honglei Chen
    Nicholas W Wood
    Henry Houlden
    Haydeh Payami
    Alexis Brice
    William K Scott
    Thomas Gasser
    Lars Bertram
    Nicholas Eriksson
    Tatiana Foroud
    Andrew B Singleton
    Nature Genetics, 2014, 46 : 989 - 993
  • [34] Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes
    Zeggini, Eleftheria
    Scott, Laura J.
    Saxena, Richa
    Voight, Benjamin F.
    Marchini, Jonathan L.
    Hu, Tianle
    de Bakker, Paul I. W.
    Abecasis, Goncalo R.
    Almgren, Peter
    Andersen, Gitte
    Ardlie, Kristin
    Bostroem, Kristina Bengtsson
    Bergman, Richard N.
    Bonnycastle, Lori L.
    Borch-Johnsen, Knut
    Burtt, Noel P.
    Chen, Hong
    Chines, Peter S.
    Daly, Mark J.
    Deodhar, Parimal
    Ding, Chia-Jen
    Doney, Alex S. F.
    Duren, William L.
    Elliott, Katherine S.
    Erdos, Michael R.
    Frayling, Timothy M.
    Freathy, Rachel M.
    Gianniny, Lauren
    Grallert, Harald
    Grarup, Niels
    Groves, Christopher J.
    Guiducci, Candace
    Hansen, Torben
    Herder, Christian
    Hitman, Graham A.
    Hughes, Thomas E.
    Isomaa, Bo
    Jackson, Anne U.
    Jorgensen, Torben
    Kong, Augustine
    Kubalanza, Kari
    Kuruvilla, Finny G.
    Kuusisto, Johanna
    Langenberg, Claudia
    Lango, Hana
    Lauritzen, Torsten
    Li, Yun
    Lindgren, Cecilia M.
    Lyssenko, Valeriya
    Marvelle, Amanda F.
    NATURE GENETICS, 2008, 40 (05) : 638 - 645
  • [35] phyloDB: A framework for large-scale phylogenetic analysis of sequence based typing data
    Lourenço, Bruno
    Vaz, Cátia
    Coimbra, Miguel E.
    Francisco, Alexandre P.
    SoftwareX, 2024, 26
  • [36] phyloDB: A framework for large-scale phylogenetic analysis of sequence based typing data
    Lourenco, Bruno
    Vaz, Catia
    Coimbra, Miguel E.
    Francisco, Alexandre P.
    SOFTWAREX, 2024, 26
  • [37] Sequence variants associated with variation in lean mass: Multi-ethnic meta-analysis
    Zhang, Xiaoyu
    Su, Kuan-Jui
    Liu, Ching-Ti
    Xu, Hanfei
    Hsu, Yi-Hsiang
    Fu, Mao
    Wiggins, Kerri
    Yau, Michelle
    Crandall, Carolyn
    Mitchell, Braxton
    Jackson, Rebecca
    Montasser, May
    Kiel, Douglas P.
    Deng, HongWen
    Karasik, David
    JOURNAL OF BONE AND MINERAL RESEARCH, 2022, 37 : 47 - 48
  • [38] Data consistency checking for meta-analysis of large scale clinical trials
    Wang, Y
    Flather, M
    Pogue, J
    Yusuf, S
    AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE BIOPHARMACEUTICAL SECTION, 1996, : 261 - 266
  • [39] Large-scale Meta-analysis of Genome-wide Association (GWA) Scans for Osteoporosis Traits: the GEFOS Consortium
    Rivadeneira, F.
    Kavvoura, F.
    Karasik, D.
    Richards, B.
    Halldorsson, B.
    Hsu, Y.
    Demissie, S.
    Cupples, A.
    Zillikens, C.
    van Duijn, C.
    Estrada, K.
    van Meurs, J.
    Pols, H.
    Thorsteinsdottir, U.
    Brown, M.
    Spector, T.
    Ralston, S.
    Kiel, D.
    Ioannidis, J.
    Styrkarsdottir, U.
    Uitterlinden, A.
    JOURNAL OF BONE AND MINERAL RESEARCH, 2008, 23 : S27 - S27
  • [40] Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: a large-scale meta-analysis
    Gharahkhani, Puya
    Fitzgerald, Rebecca C.
    Vaughan, Thomas L.
    Palles, Claire
    Gockel, Ines
    Tomlinson, Ian
    Buas, Matthew F.
    May, Andrea
    Gerges, Christian
    Anders, Mario
    Becker, Jessica
    Kreuser, Nicole
    Noder, Tania
    Venerito, Marino
    Veits, Lothar
    Schmidt, Thomas
    Manner, Hendrik
    Schmidt, Claudia
    Hess, Timo
    Boehmer, Anne C.
    Izbicki, Jakob R.
    Hoelscher, Arnulf H.
    Lang, Hauke
    Lorenz, Dietmar
    Schumacher, Brigitte
    Hackelsberger, Andreas
    Mayershofer, Rupert
    Pech, Oliver
    Vashist, Yogesh
    Ott, Katja
    Vieth, Michael
    Weismueller, Josef
    Noethen, Markus M.
    Attwood, Stephen
    Barr, Hugh
    Chegwidden, Laura
    de Caestecker, John
    Harrison, Rebecca
    Love, Sharon B.
    MacDonald, David
    Moayyedi, Paul
    Prenen, Hans
    Watson, R. G. Peter
    Iyer, Prasad G.
    Anderson, Lesley A.
    Bernstein, Leslie
    Chow, Wong-Ho
    Hardie, Laura J.
    Lagergren, Jesper
    Liu, Geoffrey
    LANCET ONCOLOGY, 2016, 17 (10): : 1363 - 1373