Convergence of discrete schemes for the Perona-Malik equation

被引:16
|
作者
Bellettini, G. [1 ,2 ]
Novaga, M. [4 ]
Paolini, M. [3 ]
Tornese, C. [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Ist Nazl Fis Nucl, Lab Nazl Frascati, Rome, Italy
[3] Univ Cattolica Brescia, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
[4] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
Perona-Malik equation; forward-back ward parabolic equations; semidiscrete schemes; implicit time discretizations;
D O I
10.1016/j.jde.2008.05.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the convergence, up to a subsequence, of the spatial semidiscrete scheme for the one-dimensional Perona-Malik equation u(t) = (phi'(u(x))), phi(p) := 1/2 log(1+ p(2)). when the initial datum (u) over bar is 1-Lipschitz out of a finite number of jump points, and we characterize the problem satisfied by the limit solution. In the more difficult case when (u) over bar has a whole interval where phi"((u) over barx) is negative, we construct a solution by a careful inspection of the behaviour of the approximating solutions in a space-time neighbourhood of the jump points. The limit solution it we obtain is the same as the one obtained by replacing phi(.) with the truncated function min(phi(.), 1), and it turns out that u solves a free boundary problem. The free boundary consists of the points dividing the region where \u(x)\ > 1 from the region where \u(x)\ <= 1. Finally, we consider the full space-time discretization (implicit in time) of the Perona-Malik equation, and we show that, if the time step is small with respect to the spatial grid h, then the limit is the same as the one obtained with the spatial semidiscrete scheme. On the other hand, if the time step is large with respect to h, then the limit solution equals (u) over bar, i.e., the standing solution of the convexified problem. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:892 / 924
页数:33
相关论文
共 50 条
  • [21] Modified Perona-Malik equation and computer simulation for image denoising
    Feng, Zheng Jian
    Chengwei, Huang
    Ji, Zhang
    Feng, Z. J. (czzhengjianfeng@163.com), 1600, Bentham Science Publishers B.V., P.O. Box 294, Bussum, 1400 AG, Netherlands (08): : 37 - 41
  • [22] Ramp preserving Perona-Malik model
    Chen, Qiang
    Montesinos, Philippe
    Sen Sun, Quan
    Xia, De Shen
    SIGNAL PROCESSING, 2010, 90 (06) : 1963 - 1975
  • [23] Wavefronts for Generalized Perona-Malik Equations
    Corli, Andrea
    Malaguti, Luisa
    Sovrano, Elisa
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL I, HYP2022, 2024, 34 : 227 - 236
  • [24] New estimation method of the contrast parameter for the Perona-Malik diffusion equation
    Borroto-Fernandez, M.
    Gonzalez-Hidalgo, M.
    Leon-Mecias, A.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2016, 4 (3-4): : 238 - 252
  • [25] The Magic of Nonlocal Perona-Malik Diffusion
    Li, Xin
    IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (09) : 533 - 534
  • [26] Existence result and approximation of an optimal control problem for the Perona-Malik equation
    Kogut, Peter
    Kohut, Yaroslav
    Manzo, Rosanna
    RICERCHE DI MATEMATICA, 2024, 73 (04) : 1945 - 1962
  • [27] Mumford-Shah functional as Γ-limit of discrete Perona-Malik energies
    Morini, M
    Negri, M
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (06): : 785 - 805
  • [28] Perona-malik equation - Error estimates for explicit finite volume scheme
    Handlovičová, A.
    Krivá, Z.
    Mathematical Modelling and Analysis, 2005, 10 (04) : 353 - 366
  • [29] Stability properties of the Perona-Malik scheme
    Esedoglu, Selim
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (03) : 1297 - 1313
  • [30] The Perona-Malik method as an edge pruning algorithm
    Kichenassamy, Satyanad
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 30 (02) : 209 - 219