On the resistanceless statement of the two-dimensional Neumann-Kelvin problem for a surface-piercing tandem

被引:7
|
作者
Kuznetsov, N [1 ]
Motygin, O [1 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, Lab Math Modelling Wave Phenomena, St Petersburg 199178, Russia
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1093/imamat/62.1.81
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new set of supplementary conditions is proposed for the two-dimensional Neumann-Kelvin problem describing the steady-state forward motion of a surface-piercing tandem in an infinite-depth fluid. This problem is shown to be uniquely solvable for almost every value of the forward speed U. The velocity potential solving the problem corresponds to a flow about the tandem providing no resistance (wave and spray resistance vanish simultaneously). On the other hand, for the exceptional values of U examples of non-uniqueness (trapped modes) are constructed using the inverse procedure recently applied by McIver (J. Fluid Mech. 1996) to the problem of time-harmonic water waves. For the proposed statement of the Neumann-Kelvin problem the inverse method involves the investigation of streamlines generated by two vortices placed in the free surface. The spacing of vortices delivering trapped modes depends on U.
引用
收藏
页码:81 / 99
页数:19
相关论文
共 50 条
  • [21] The free surface effects on the hydrodynamics of two-dimensional hydrofoils in tandem
    Xu, G. D.
    Xu, W. H.
    Duan, W. Y.
    Cai, H. P.
    Qi, J. T.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2020, 115 : 133 - 141
  • [22] Surface tension effects on two-dimensional two-phase Kelvin-Helmholtz instabilities
    Zhang, RY
    He, XY
    Doolen, G
    Chen, SY
    ADVANCES IN WATER RESOURCES, 2001, 24 (3-4) : 461 - 478
  • [23] On the Dirichlet-Neumann problem for the dissipative Helmholtz equation in a two-dimensional domain with cuts with the Neumann condition on the cuts
    P. A. Krutitskii
    V. V. Kolybasova
    Doklady Mathematics, 2006, 73 : 67 - 70
  • [24] On the Dirichlet-Neumann problem for the dissipative Helmholtz equation in a two-dimensional domain with cuts with the Neumann condition on the cuts
    Krutitskii, P. A.
    Kolybasova, V. V.
    DOKLADY MATHEMATICS, 2006, 73 (01) : 67 - 70
  • [25] Two-Dimensional Line Contact Problem with Surface Tension
    Ou, Zhi-ying
    Liu, Xiao-yan
    INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND MATERIALS ENGINEERING (EEME 2014), 2014, : 861 - 866
  • [26] Two-dimensional Hertzian contact problem with surface tension
    Long, J. M.
    Wang, G. F.
    Feng, X. Q.
    Yu, S. W.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2012, 49 (13) : 1588 - 1594
  • [27] Concentration on Curves for a Neumann Ambrosetti–Prodi-Type Problem in Two-Dimensional Domains
    Sami Baraket
    Zied Khemiri
    Fethi Mahmoudi
    Abdellatif Messaoudi
    Annales Henri Poincaré, 2018, 19 : 3581 - 3633
  • [28] Concentration on Curves for a Neumann Ambrosetti-Prodi-Type Problem in Two-Dimensional Domains
    Baraket, Sami
    Khemiri, Zied
    Mahmoudi, Fethi
    Messaoudi, Abdellatif
    ANNALES HENRI POINCARE, 2018, 19 (12): : 3581 - 3633
  • [29] The influence of electric fields and surface tension on Kelvin–Helmholtz instability in two-dimensional jets
    Scott Grandison
    Demetrios T. Papageorgiou
    Jean-Marc Vanden-Broeck
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 125 - 144
  • [30] Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy
    Henning, Albert K.
    Hochwitz, Todd
    Slinkman, James
    Never, James
    Hoffmann, Steven
    Kaszuba, Phil
    Daghlian, Charles
    Journal of Applied Physics, 1995, 77 (05)