A new Hermite-Hadamard type inequality for coordinate convex function

被引:3
|
作者
Cao, Haisong [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou, Peoples R China
关键词
Hermite-Hadamard's inequality; Convex function; Coordinates;
D O I
10.1186/s13660-020-02428-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we establish a new Hermite-Hadamard type inequality for the coordinate convex function by constructing two monotonic sequences. The given result is the generalization and improvement of some previously obtained results.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] New discrete inequalities of Hermite-Hadamard type for convex functions
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Alqudah, Manar A.
    Jarad, Fahd
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [22] The Hermite-Hadamard Type Inequality of GA-Convex Functions and Its Application
    Zhang, Xiao-Ming
    Chu, Yu-Ming
    Zhang, Xiao-Hui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [23] A Generalized Hermite-Hadamard Inequality for Coordinated Convex Function and Some Associated Mappings
    Rehman, Atiq Ur
    Farid, Gulam
    Malik, Sidra
    JOURNAL OF MATHEMATICS, 2016, 2016
  • [24] A Review of Hermite-Hadamard Inequality for α-Type Real-Valued Convex Functions
    Almutairi, Ohud
    Kilicman, Adem
    SYMMETRY-BASEL, 2022, 14 (05):
  • [25] The Hermite-Hadamard Type Inequality of GA-Convex Functions and Its Application
    Xiao-Ming Zhang
    Yu-Ming Chu
    Xiao-Hui Zhang
    Journal of Inequalities and Applications, 2010
  • [26] An extension of the Hermite-Hadamard inequality for convex and s-convex functions
    Korus, Peter
    AEQUATIONES MATHEMATICAE, 2019, 93 (03) : 527 - 534
  • [27] A general multidimensional Hermite-Hadamard type inequality
    de la Cal, Jesus
    Carcamo, Javier
    Escauriaza, Luis
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) : 659 - 663
  • [28] Hermite-Hadamard type inequality for Sugeno integrals
    Li, Dong-Qing
    Song, Xiao-Qiu
    Yue, Tian
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 237 : 632 - 638
  • [29] On a weighted Hermite-Hadamard inequality involving convex functional arguments
    Raissouli, Mustapha
    Chergui, Mohamed
    Tarik, Lahcen
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (08) : 3093 - 3103
  • [30] Comment on ‘the hermite-hadamard inequality for R-convex functions’
    Wu, Zhi-Pan
    Lecture Notes in Electrical Engineering, 2016, 375 : 1245 - 1248