Defects in the discrete non-linear Schrodinger model

被引:15
|
作者
Doikou, Anastasia [1 ]
机构
[1] Univ Patras, Dept Engn Sci, Div Phys, GR-26500 Patras, Greece
关键词
STATISTICAL-MODELS; QUANTUM; LINE;
D O I
10.1016/j.nuclphysb.2011.08.015
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The discrete non-linear Schrodinger (NLS) model in the presence of an integrable defect is examined. The problem is viewed from a purely algebraic point of view, starting from the fundamental algebraic relations that rule the model. The first charges in involution are explicitly constructed, as well as the corresponding Lax pairs. These lead to sets of difference equations, which include particular terms corresponding to the impurity point. A first glimpse regarding the corresponding continuum limit is also provided. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 165
页数:13
相关论文
共 50 条
  • [21] A DISCRETE ARMA MODEL FOR NON-LINEAR SYSTEM-IDENTIFICATION
    PARKER, SR
    PERRY, FA
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1981, 28 (03): : 224 - 233
  • [22] The non-linear Schrodinger equation with a periodic δ-interaction
    Pava, Jaime Angulo
    Ponce, Gustavo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (03): : 497 - 551
  • [23] Non-linear generalization of the relativistic Schrodinger equations
    Ochs, U
    Sorg, M
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1996, 51 (09): : 965 - 982
  • [24] On the variational principle for the non-linear Schrodinger equation
    Mihalka, Zsuzsanna E.
    Margocsy, Adam
    Szabados, Agnes
    Surjan, Peter R.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (01) : 340 - 351
  • [25] Damped Non-linear Coupled Schrodinger Equations
    Saanouni, Tarek
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) : 1093 - 1110
  • [26] A NON-LINEAR GENERALIZATION OF THE SCHRODINGER AND DIRAC EQUATIONS
    SCHONBERG, M
    NUOVO CIMENTO, 1954, 11 (06): : 674 - 682
  • [27] The energy graph of the non-linear Schrodinger equation
    Procesi, M.
    Procesi, C.
    Nguyen, B. Van
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2013, 24 (02) : 229 - 301
  • [28] Instability for the semiclassical non-linear Schrodinger equation
    Burq, N
    Zworski, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (01) : 45 - 58
  • [29] Inhomogeneous coupled non-linear Schrodinger systems
    Saanouni, Tarek
    Ghanmi, Radhia
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (10)
  • [30] Analytical and numerical aspects of the linear and non-linear Schrodinger equation
    Negulescu, Claudia
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2019, 10 (02): : 351 - 446