Defects in the discrete non-linear Schrodinger model

被引:15
|
作者
Doikou, Anastasia [1 ]
机构
[1] Univ Patras, Dept Engn Sci, Div Phys, GR-26500 Patras, Greece
关键词
STATISTICAL-MODELS; QUANTUM; LINE;
D O I
10.1016/j.nuclphysb.2011.08.015
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The discrete non-linear Schrodinger (NLS) model in the presence of an integrable defect is examined. The problem is viewed from a purely algebraic point of view, starting from the fundamental algebraic relations that rule the model. The first charges in involution are explicitly constructed, as well as the corresponding Lax pairs. These lead to sets of difference equations, which include particular terms corresponding to the impurity point. A first glimpse regarding the corresponding continuum limit is also provided. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 165
页数:13
相关论文
共 50 条
  • [1] Liouville integrable defects: the non-linear Schrodinger paradigm
    Avan, Jean
    Doikou, Anastasia
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (01):
  • [2] The generalized non-linear Schrodinger model on the interval
    Doikou, Anastasia
    Fioravanti, Davide
    Ravanini, Francesco
    NUCLEAR PHYSICS B, 2008, 790 (03) : 465 - 492
  • [3] Existence results of solitons in discrete non-linear Schrodinger equations
    Shi, Haiping
    Zhang, Yuanbiao
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2016, 27 (05) : 726 - 737
  • [4] Hamiltonian dynamics of soliton of discrete non-linear Schrodinger equation
    Kosevich, A.M.
    Zhurnal Eksperimental'noj i Teoreticheskoj Fiziki, 2001, 119 (05): : 995 - 1001
  • [5] Ground states in spatially discrete non-linear Schrodinger models
    Stefanov, Atanas G.
    Ross, Ryan M.
    Kevrekidis, Panayotis G.
    NONLINEARITY, 2023, 36 (08) : 4053 - 4085
  • [6] INVERSE PERIODIC PROBLEM FOR THE DISCRETE APPROXIMATION OF THE SCHRODINGER NON-LINEAR EQUATION
    BOGOLIUBOV, NN
    PRIKARPATSKII, AK
    DOKLADY AKADEMII NAUK SSSR, 1982, 262 (05): : 1103 - 1108
  • [7] Global well-posedness for discrete non-linear Schrodinger equation
    N'Guerekata, Gaston M.
    Pankov, Alexander
    APPLICABLE ANALYSIS, 2010, 89 (09) : 1513 - 1521
  • [8] Spectrum of a quantum parity non-linear Schrodinger model
    Li, YQ
    PHYSICS LETTERS A, 1996, 212 (05) : 241 - 246
  • [9] A bi-Hamiltonian structure for the integrable, discrete non-linear Schrodinger system
    Ercolani, Nicholas M.
    Lozano, Guadalupe I.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (02) : 105 - 121
  • [10] Localization in the Discrete Non-linear Schrodinger Equation and Geometric Properties of the Microcanonical Surface
    Arezzo, Claudio
    Balducci, Federico
    Piergallini, Riccardo
    Scardicchio, Antonello
    Vanoni, Carlo
    JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (02)