共 50 条
Optimization of Nitrogen Fertilizer Application with Climate-Smart Agriculture in the North China Plain
被引:11
|作者:
Chen, Jinsai
[1
,2
]
Wang, Guangshuai
[1
]
Hamani, Abdoul Kader Mounkaila
[1
]
Amin, Abubakar Sunusi
[1
]
Sun, Weihao
[1
]
Zhang, Yingying
[1
]
Liu, Zhandong
[1
]
Gao, Yang
[1
]
机构:
[1] Chinese Acad Agr Sci, Minist Agr & Rural Affairs, Inst Farmland Irrigat, Key Lab Crop Water Use & Regulat, Xinxiang 453002, Peoples R China
[2] China Agr Univ, Coll Agron, Beijing 100081, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
Fluvisols;
global warming potential;
maize yield;
NO3--N;
nitrogen use efficiency;
N2O;
GREENHOUSE-GAS EMISSIONS;
N2O EMISSIONS;
IRRIGATION METHODS;
WINTER-WHEAT;
SOIL CO2;
MANAGEMENT;
TILLAGE;
D O I:
10.3390/w13233415
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Long-term excessive nitrogen fertilizer input has resulted in several environmental problems, including an increase in N2O emissions and the aggravation of nitrate leaching; monitoring nitrogen fertilizer is crucial for maize with high yield. This study aimed to optimize the amount of nitrogen applied to maize by Climate-Smart Agriculture (CSA) so as to continuously improve agricultural productivity and reduce or eliminate N2O emissions as much as possible. Field experiments with a completely randomized design were conducted to examine the effects of six nitrogen treatments (N application levels of 0, 120, 180, 240, 300, 360 kg & BULL;ha(-1), respectively) on N2O emissions, residual concentration of nitrate and ammonium nitrogen, maize yield, and nitrogen utilization efficiency in 2018 and 2019. The results indicated that the residual concentration of nitrate nitrogen (NO3--N) in the two seasons significantly increased; N2O emissions significantly increased, and the nitrogen fertilizer agronomic efficiency and partial productivity of maize fell dramatically as the nitrogen application rate increased. The maize grain yield rose when the N application amount was raised (N application amount < 300 kg & BULL;ha(-1)) but decreased when the N application amount > 300 kg & BULL;ha(-1). An increase in the nitrogen application rate can decrease nitrogen use efficiency, increase soil NO3--N residual, and N2O emissions. Reasonable nitrogen application can increase maize yield and reduce N2O emissions and be conducive to improving nitrogen use efficiency. By considering summer maize yield, nitrogen use efficiency, and farmland ecological environment, 173.94~178.34 kg N kg & BULL;ha(-1) could be utilized as the nitrogen threshold for summer maize in the North China Plain.
引用
收藏
页数:13
相关论文