Federated Learning in Edge Computing: A Systematic Survey

被引:132
|
作者
Abreha, Haftay Gebreslasie [1 ]
Hayajneh, Mohammad [1 ]
Serhani, Mohamed Adel [1 ]
机构
[1] United Arab Emirates Univ, Coll Informat Technol, Dept Comp & Network Engn, POB 15551, Al Ain, U Arab Emirates
关键词
federated learning; edge computing; intelligent edge; edge AI; data privacy; data security; MOBILE-EDGE; NEURAL-NETWORKS; RESOURCE-ALLOCATION; ATTACK DETECTION; LOW-LATENCY; COMMUNICATION; INTERNET; CHALLENGES; THINGS; FOG;
D O I
10.3390/s22020450
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Edge Computing (EC) is a new architecture that extends Cloud Computing (CC) services closer to data sources. EC combined with Deep Learning (DL) is a promising technology and is widely used in several applications. However, in conventional DL architectures with EC enabled, data producers must frequently send and share data with third parties, edge or cloud servers, to train their models. This architecture is often impractical due to the high bandwidth requirements, legalization, and privacy vulnerabilities. The Federated Learning (FL) concept has recently emerged as a promising solution for mitigating the problems of unwanted bandwidth loss, data privacy, and legalization. FL can co-train models across distributed clients, such as mobile phones, automobiles, hospitals, and more, through a centralized server, while maintaining data localization. FL can therefore be viewed as a stimulating factor in the EC paradigm as it enables collaborative learning and model optimization. Although the existing surveys have taken into account applications of FL in EC environments, there has not been any systematic survey discussing FL implementation and challenges in the EC paradigm. This paper aims to provide a systematic survey of the literature on the implementation of FL in EC environments with a taxonomy to identify advanced solutions and other open problems. In this survey, we review the fundamentals of EC and FL, then we review the existing related works in FL in EC. Furthermore, we describe the protocols, architecture, framework, and hardware requirements for FL implementation in the EC environment. Moreover, we discuss the applications, challenges, and related existing solutions in the edge FL. Finally, we detail two relevant case studies of applying FL in EC, and we identify open issues and potential directions for future research. We believe this survey will help researchers better understand the connection between FL and EC enabling technologies and concepts.
引用
收藏
页数:45
相关论文
共 50 条
  • [21] Edge Computing Based on Federated Learning for Machine Monitoring
    Tsai, Yao-Hong
    Chang, Dong-Meau
    Hsu, Tse-Chuan
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [22] Federated learning framework for mobile edge computing networks
    Fantacci, Romano
    Picano, Benedetta
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2020, 5 (01) : 15 - 21
  • [23] Recent advances on federated learning: A systematic survey
    Liu, Bingyan
    Lv, Nuoyan
    Guo, Yuanchun
    Li, Yawen
    NEUROCOMPUTING, 2024, 597
  • [24] Federated Learning in Mobile Edge Networks: A Comprehensive Survey
    Lim, Wei Yang Bryan
    Nguyen Cong Luong
    Dinh Thai Hoang
    Jiao, Yutao
    Liang, Ying-Chang
    Yang, Qiang
    Niyato, Dusit
    Miao, Chunyan
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (03): : 2031 - 2063
  • [25] Federated learning based method for intelligent computing with privacy preserving in edge computing
    Liu Q.
    Xu X.
    Zhang X.
    Dou W.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2021, 27 (09): : 2604 - 2610
  • [26] PASTEL: Privacy-Preserving Federated Learning in Edge Computing
    Elhattab, Fatima
    Bouchenak, Sara
    Boscher, Cedric
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2023, 7 (04):
  • [27] Adaptive Clustered Federated Learning for Heterogeneous Data in Edge Computing
    Biyao Gong
    Tianzhang Xing
    Zhidan Liu
    Junfeng Wang
    Xiuya Liu
    Mobile Networks and Applications, 2022, 27 : 1520 - 1530
  • [28] Federated Learning Assisted Intelligent IoV Mobile Edge Computing
    Quan, Haoyu
    Zhang, Qingmiao
    Zhao, Junhui
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2025, 9 (01): : 228 - 241
  • [29] Decentralized Federated Learning With Intermediate Results in Mobile Edge Computing
    Chen, Suo
    Xu, Yang
    Xu, Hongli
    Jiang, Zhida
    Qiao, Chunming
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (01) : 341 - 358
  • [30] Multicore Federated Learning for Mobile-Edge Computing Platforms
    Bai, Yang
    Chen, Lixing
    Li, Jianhua
    Wu, Jun
    Zhou, Pan
    Xu, Zichuan
    Xu, Jie
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (07): : 5940 - 5952