A linear chaotic quantum harmonic oscillator

被引:23
|
作者
Duan, J [1 ]
Fu, XC
Liu, PD
Manning, A
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[4] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
infinite dimension; quantum oscillator; linear chaotic system;
D O I
10.1016/S0893-9659(98)00119-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a, linear quantum harmonic oscillator is chaotic in the sense of Li-Yorke. We also prove that the weighted backward shift map (used as an infinite-dimensional linear chaos model) in a separable Hilbert space is chaotic in the sense of Li-Yorke, in addition to being chaotic in the sense of Devaney. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:15 / 19
页数:5
相关论文
共 50 条
  • [21] KAM for the Quantum Harmonic Oscillator
    Benoît Grébert
    Laurent Thomann
    Communications in Mathematical Physics, 2011, 307 : 383 - 427
  • [22] Subnormality in the quantum harmonic oscillator
    Szafraniec, FH
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (02) : 323 - 334
  • [23] The bicomplex quantum harmonic oscillator
    Lavoie, R. Gervais
    Marchildon, L.
    Rochon, D.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2010, 125 (10): : 1173 - 1192
  • [24] QUANTUM DISSIPATIVE HARMONIC OSCILLATOR
    Imranov, Fariz B.
    Jafarova, Aynura M.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2013, 39 (47): : 157 - 164
  • [25] Duality in the quantum harmonic oscillator
    Szafraniec, FH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10487 - 10492
  • [26] KAM for the Quantum Harmonic Oscillator
    Grebert, Benoit
    Thomann, Laurent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (02) : 383 - 427
  • [27] Discrete Quantum Harmonic Oscillator
    Dobrogowska, Alina
    Fernandez C, David J.
    SYMMETRY-BASEL, 2019, 11 (11):
  • [28] Quantum Harmonic Oscillator Sonification
    Saranti, Anna
    Eckel, Gerhard
    Pirro, David
    AUDITORY DISPLAY, 2010, 5954 : 184 - 201
  • [29] Generic Transporters for the Linear Time-Dependent Quantum Harmonic Oscillator on R
    Maspero, A.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (14) : 12088 - 12118
  • [30] DEVELOPMENT OF CHAOTIC OSCILLATORS FROM THE DAMPED HARMONIC OSCILLATOR
    Harwood, Luke
    Warr, Paul
    Beach, Mark
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (11):