Deep Complex Convolutional Neural Networks for Subwavelength Microstructure Imaging

被引:2
|
作者
Wei, Teng-Fei [1 ]
Wang, Xiao-Hua [1 ]
Qu, Cheng-Hui [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys, Chengdu 611731, Peoples R China
[2] Qilu Res Inst, Jinan 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Iterative methods; Convolutional neural networks; Receivers; Rails; Transmitters; Real-time systems; Permittivity; Complex-value; convolutional neural network (CNN); deep learning (DL); inverse problems; subwavelength microstructure; INVERSE PROBLEMS; RECONSTRUCTION;
D O I
10.1109/TAP.2022.3188389
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To take the advantages of a convolutional neural network (CNN), U-net, and a complex-valued CNN (complex-CNN), a new complex-valued U-net (CU-net) is proposed for deep learning (DL)-based methods to solve inverse scattering problem (ISP). With the proposed CU-net, the complex scattered data carrying rich information of object can be directly used for inversion without any preprocessing, which is very helpful for the accuracy improvement of the final result. To validate the performance of proposed method, a microstructure, consisting of a finite periodic set of circular cylindrical dielectric rods, is considered and detected for textural abnormalities, which contains the missing, flaw, and displacement of the rods. The distances between rods and diameters of rods are both subwavelength, well beyond the Rayleigh criterion, which causes this ISP extremely ill-posed. For comparison, both the conventional iterative method and DL-based method are used to solve this nonlinear problem. Numerical simulations demonstrate that the well-trained DL-based methods can successfully produce excellent results almost in real time and can greatly outperform the conventional iterative methods in terms of quality and efficiency.
引用
收藏
页码:6329 / 6335
页数:7
相关论文
共 50 条
  • [41] Deep Convolutional Neural Networks on Cartoon Functions
    Grohs, Philipp
    Wiatowski, Thomas
    Bolcskei, Helmut
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1163 - 1167
  • [42] Elastography mapped by deep convolutional neural networks
    Liu, DongXu
    Kruggel, Frithjof
    Sun, LiZhi
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (07) : 1567 - 1574
  • [43] Very Deep Convolutional Neural Networks for LVCSR
    Bi, Mengxiao
    Qian, Yanmin
    Yu, Kai
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 3259 - 3263
  • [44] Elastography mapped by deep convolutional neural networks
    LIU DongXu
    KRUGGEL Frithjof
    SUN LiZhi
    Science China(Technological Sciences), 2021, 64 (07) : 1567 - 1574
  • [45] Universal Consistency of Deep Convolutional Neural Networks
    Lin, Shao-Bo
    Wang, Kaidong
    Wang, Yao
    Zhou, Ding-Xuan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4610 - 4617
  • [46] Deep convolutional neural networks in the face of caricature
    Hill, Matthew Q.
    Parde, Connor J.
    Castillo, Carlos D.
    Colon, Y. Ivette
    Ranjan, Rajeev
    Chen, Jun-Cheng
    Blanz, Volker
    O'Toole, Alice J.
    NATURE MACHINE INTELLIGENCE, 2019, 1 (11) : 522 - 529
  • [47] WEATHER CLASSIFICATION WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
    Elhoseiny, Mohamed
    Huang, Sheng
    Elgammal, Ahmed
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3349 - 3353
  • [48] Refining Architectures of Deep Convolutional Neural Networks
    Shankar, Sukrit
    Robertson, Duncan
    Ioannou, Yani
    Criminisi, Antonio
    Cipolla, Roberto
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2212 - 2220
  • [49] Deep Parametric Continuous Convolutional Neural Networks
    Wang, Shenlong
    Suo, Simon
    Ma, Wei-Chiu
    Pokrovsky, Andrei
    Urtasun, Raquel
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2589 - 2597
  • [50] Review of Lightweight Deep Convolutional Neural Networks
    Chen, Fanghui
    Li, Shouliang
    Han, Jiale
    Ren, Fengyuan
    Yang, Zhen
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (04) : 1915 - 1937