Improving maximum count rate of superconducting nanowire single-photon detector with small active area using series attenuator

被引:11
|
作者
Lv, Chaolin [1 ,2 ]
Zhang, Weijun [1 ,3 ]
You, Lixing [1 ,3 ]
Hu, Peng [1 ,2 ]
Wang, Heqing [1 ,2 ]
Li, Hao [1 ,3 ]
Zhang, Chengjun [1 ,2 ]
Huang, Jia [1 ,2 ]
Wang, Yong [1 ,2 ]
Yang, Xiaoyan [1 ,3 ]
Wang, Zhen [1 ,3 ]
Xie, Xiaoming [1 ,3 ]
机构
[1] Chinese Acad Sci, SIMIT, State Key Lab Funct Mat Informat, 865 Changning Rd, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[3] CAS Ctr Excellence Superconducting Elect CENSE, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
TIME;
D O I
10.1063/1.5049549
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Maximum count rate is a crucial parameter of superconducting nanowire single-photon detector (SNSPD) for quantum communication and laser communication. However, when increasing the incident photon flux, the SNSPD device with small active area is apt to latch due to the AC coupling of room temperature amplifier in the readout circuit, which limits SNSPD to reach a high count rate. We proposed a simple way by inserting an electrical attenuator in series with small-active area SNSPD to avoid the latching effect, thus improving maximum count rate effectively. The count rate with the system detection efficiency reduced by half increased by 6 times for SNSPD with an active area of Phi 15 mu m. (c) 2018 Author(s).
引用
收藏
页数:5
相关论文
共 50 条
  • [31] High efficiency, large-active-area superconducting nanowire single-photon detectors
    Gu Min
    Zhang La-Bao
    Kang Lin
    Zhao Qing-Yuan
    Jia Tao
    Wan Chao
    Xu Rui-Ying
    Yang Xiao-Zhong
    Wu Pei-Heng
    Zhang Yong
    Xia Jin-Song
    CHINESE PHYSICS B, 2015, 24 (06)
  • [32] High efficiency,large-active-area superconducting nanowire single-photon detectors
    顾敏
    张蜡宝
    康琳
    赵清源
    郏涛
    万超
    徐睿莹
    杨小忠
    吴培亨
    张永
    夏金松
    Chinese Physics B, 2015, (06) : 650 - 654
  • [33] Ultrafast nanowire superconducting single-photon detector with photon number resolving capability
    Goltsman, Gregory N.
    QUANTUM COMMUNICATIONS REALIZED II, 2009, 7236
  • [34] Origin of intrinsic dark count in superconducting nanowire single-photon detectors
    Yamashita, T.
    Miki, S.
    Makise, K.
    Qiu, W.
    Terai, H.
    Fujiwara, M.
    Sasaki, M.
    Wang, Z.
    APPLIED PHYSICS LETTERS, 2011, 99 (16)
  • [35] Readout of superconducting nanowire single-photon detectors at high count rates
    Kerman, Andrew J.
    Rosenberg, Danna
    Molnar, Richard J.
    Dauler, Eric A.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (14)
  • [36] Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate
    Zhang Sen
    Tao Xu
    Feng Zhi-Jun
    Wu Gan-Hua
    Xue Li
    Yan Xia-Chao
    Zhang La-Bao
    Jia Xiao-Qing
    Wang Zhi-Zhong
    Sun Jun
    Dong Guang-Yan
    Kang Lin
    Wu Pei-Heng
    ACTA PHYSICA SINICA, 2016, 65 (18)
  • [37] High detection efficiency and rate superconducting nanowire single-photon detector with a composite optical structure
    Gu, Min
    Kang, Lin
    Zhang, Labao
    Jia, Tao
    Wang, Chao
    Xu, Ruiying
    Yang, Xiaozhong
    Wu, Peiheng
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXIII, 2015, 9357
  • [38] Large area superconducting nanowire single photon detector arrays
    Casaburi, Alessandro
    Pizzone, Andrea
    Hadfield, Robert Hugh
    2014 FOTONICA AEIT ITALIAN CONFERENCE ON PHOTONICS TECHNOLOGIES, 2014,
  • [39] Deep confocal fluorescence microscopy with single-photon superconducting nanowire detector
    Xia, Fei
    Gevers, Monique
    Fognini, Andreas
    Mok, Aaron T.
    Li, Bo
    Akabri, Najva
    Zadeh, Iman E.
    Qin-Dregely, Jessie
    Xu, Chris
    ADVANCED PHOTON COUNTING TECHNIQUES XVI, 2022, 12089
  • [40] Detection Efficiency of a Spiral-Nanowire Superconducting Single-Photon Detector
    Henrich, D.
    Rehm, L.
    Doerner, S.
    Hofherr, M.
    Il'in, K.
    Semenov, A.
    Siegel, M.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)