Diminishing returns in next-generation sequencing (NGS) transcriptome data

被引:22
|
作者
Lei, Rex [1 ,2 ]
Ye, Kaixiong [1 ]
Gu, Zhenglong [1 ]
Sun, Xuepeng [1 ,3 ]
机构
[1] Cornell Univ, Div Nutr Sci, Ithaca, NY 14853 USA
[2] Ithaca High Sch, Ithaca, NY 14853 USA
[3] Zhejiang Univ, Coll Agr & Biotechnol, Hangzhou 310058, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
RNA-seq efficiency; RNA-SEQ; GENOME; MICROARRAY; EXPRESSION; REPRODUCIBILITY; TECHNOLOGY; LANDSCAPE; BIOLOGY; DEPTH;
D O I
10.1016/j.gene.2014.12.013
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
RNA-seq is increasingly used to study gene expression of various organisms. While it provides a great opportunity to explore genome-scale transcriptional patterns with tremendous depth, it comes with prohibitive costs. Establishing a minimal sequencing depth for required accuracy will guide cost-effective experimental design and promote the routine application of RNA-seq. To address this issue, we selected 36 RNA-seq datasets, each with more than 20 million reads from six widely-used model organisms: Saccharomyces cerevisiae, Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Mus musculus, and Arabidopsis thaliana, and investigated statistical correlations between the sequencing depth and the outcome accuracy. To achieve this, we randomly chose reads from each dataset, mapped them to the reference genomes, and analyzed the accuracy achieved with varying coverage. Our results indicated that as low as one million reads can provide the same sequencing accuracy in transcript abundance (r = 0.99) as >30 million reads for highly-expressed genes in all six species. Because many metabolically and pathologically-relevant genes are highly expressed, our findings might be instructive for cost-effective experimental designs in NGS-based research and also provide useful guidance to similar research for other organisms. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 50 条
  • [21] Improving Next-Generation Sequencing (NGS) Success in Solid Tumors
    Goswami, Rashmi
    Chen, Hui
    Patel, Keyur
    Routbort, Mark
    Yao, Hui
    Dang, Hyvan
    Barkoh, Bedia
    Aldape, Ken
    Chowdhuri, Sinchita Roy
    Stewart, John
    Medeiros, L.
    Broaddus, Russell
    Singh, Rajesh
    Luthra, Rajyalakshmi
    [J]. LABORATORY INVESTIGATION, 2015, 95 : 499A - 499A
  • [22] Comprehensive Next-Generation Sequencing (NGS) as a Diagnostic Tool for Pathologists
    Goldstein, R.
    Tahover, E.
    Doviner, V.
    Rosengarten, O.
    Heching, N.
    Zilber, S.
    Smtih, Y.
    Golomb, E.
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2020, 22 (05): : S50 - S50
  • [23] Next-Generation Sequencing (NGS) in Childhood Myeloproliferative Diseases (MPD)
    Santopietro, Michelina
    Palumbo, Giovanna
    Moleti, Maria Luisa
    Testi, Anna Maria
    Cardarelli, Luisa
    Monaco, Nicola
    Malaspina, Francesco
    Presicce, Camilla
    Orlando, Sonia Maria
    Pancrazzi, Alessandro
    Pacilli, Annalisa
    Rotunno, Giada
    Vannucchi, Alessandro M.
    Foa, Robin
    Giona, Fiorina
    [J]. BLOOD, 2018, 132
  • [24] Initial Next-Generation Sequencing (NGS) Results of Alport Syndrome
    Koc, Altug
    Bora, Elcin
    Cinleti, Tayfun
    Yildiz, Gizem
    Bayram, Meral Torun
    Bozkaya, Ozlem Giray
    Ulgenalp, Ayfer
    [J]. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES, 2019, 3 (03): : 165 - 169
  • [25] Next-generation sequencing (NGS) as part of pathologic diagnostic armamentarium
    Rodriguez-Rodriguez, Lorna
    Hirshfield, Kim M.
    Ganesan, Shridar
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (15)
  • [26] DEVELOPMENT AND VALIDATION OF NEXT-GENERATION SEQUENCING (NGS) BASED PGD
    Fedick, A.
    Tao, X.
    Devkota, B.
    Taylor, D.
    Scott, R. T., Jr.
    Treff, N. R.
    [J]. FERTILITY AND STERILITY, 2012, 98 (03) : S54 - S54
  • [27] Optimization of de novo transcriptome assembly from next-generation sequencing data
    Surget-Groba, Yann
    Montoya-Burgos, Juan I.
    [J]. GENOME RESEARCH, 2010, 20 (10) : 1432 - 1440
  • [28] Next-generation whole transcriptome sequencing of thymic malignancies
    Radovich, Milan
    Hancock, Bradley A.
    Kassem, Nawal
    Zhu, Jin
    Glasscock, Jarret
    Badve, Sunil
    Liu, Yunlong
    Kesler, Kenneth A.
    Loehrer, Patrick J.
    Schneider, Bryan P.
    [J]. CANCER RESEARCH, 2011, 71
  • [29] Indexing Next-Generation Sequencing data
    Jalili, Vahid
    Matteucci, Matteo
    Masseroli, Marco
    Ceri, Stefano
    [J]. INFORMATION SCIENCES, 2017, 384 : 90 - 109
  • [30] NGS-Trex: Next Generation Sequencing Transcriptome profile explorer
    Ilenia Boria
    Lara Boatti
    Graziano Pesole
    Flavio Mignone
    [J]. BMC Bioinformatics, 14