Trace fluorinated-carbon-nanotube-induced lithium dendrite elimination for high-performance lithium-oxygen cells

被引:14
|
作者
Cheng, Hao [1 ]
Mao, Yangjun [1 ]
Lu, Yunhao [2 ]
Zhang, Peng [3 ]
Xie, Jian [1 ,4 ]
Zhao, Xinbing [1 ,4 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China
[3] Hangzhou Skyrich Power Co Ltd, Hangzhou 310022, Peoples R China
[4] Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLID-ELECTROLYTE INTERPHASE; LONG-CYCLE-LIFE; METAL ANODE; BATTERIES; SEI;
D O I
10.1039/c9nr09749j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal has attracted considerable attention due to its ultrahigh theoretical capacity. Nevertheless, issues such as dendritic Li formation and instability of the Li metal/electrolyte interface still restrain its practical applications. In this work, we design a Li composite anode with fluorinated carbon nanotubes (FCNT) fabricated by a simple melting-soaking method. It was found that trace amounts of added FCNT (only 1.6 wt%) lead to a significant chemical/electrochemical stability of metallic Li. The obtained Li/FCNT composite electrode (LFCNT) exhibits much better stability in open air and electrolyte than bare Li. The LFCNT enables uniform plating/stripping of metallic Li, preventing the dendrite formation during repeated cycling. In situ optical microscopy observations confirm dendrite-free Li deposition with the mechanism clarified by density functional theory calculations. Compared with bare Li, the LFCNT shows a considerable improvement in rate capability, voltage hysteresis and cycle performance, sustaining stable cycling at a high current density of 3 mA cm(-2) or a capacity up to 5 mA h cm(-2). Li-O-2 cells with a LFCNT anode exhibit a long life of 135 cycles at a capacity of 1000 mA h g(-1), which is six-fold than that with the bare Li anode.
引用
收藏
页码:3424 / 3434
页数:11
相关论文
共 50 条
  • [21] Electrochemically Formed Ultrafine Metal Oxide Nanocatalysts for High-Performance Lithium-Oxygen Batteries
    Liu, Bin
    Yan, Pengfei
    Xu, Wu
    Zheng, Jianming
    He, Yang
    Luo, Langli
    Bowden, Mark E.
    Wang, Chong -Min
    Zhang, Ji-Guang
    NANO LETTERS, 2016, 16 (08) : 4932 - 4939
  • [22] Lithium-oxygen cells with ionic-liquid-based electrolytes and vertically aligned carbon nanotube cathodes
    Cui, Z. H.
    Fan, W. G.
    Guo, X. X.
    JOURNAL OF POWER SOURCES, 2013, 235 : 251 - 255
  • [23] Recycling of graphite anode from retired lithium-ion batteries to cathode of high-performance lithium-oxygen batteries
    Wang, Yunshuo
    Lv, Xiaodong
    Kimura, Hideo
    Yang, Yunfei
    Hou, Chuanxin
    Xie, Xiubo
    Sun, Xueqin
    Zhang, Yuping
    Du, Wei
    Yang, Xiaoyang
    JOURNAL OF ENERGY STORAGE, 2024, 89
  • [24] Lithiated carbon cloth as a dendrite-free anode for high-performance lithium batteries
    Cheng, Hao
    Zhang, Shiyun
    Mei, Jian
    Qiu, Lvchao
    Zhang, Peng
    Xu, Xiongwen
    Tu, Jian
    Xie, Jian
    Zhao, Xinbing
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (11): : 5773 - 5782
  • [25] Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes
    Shichao Wu
    Yu Qiao
    Sixie Yang
    Masayoshi Ishida
    Ping He
    Haoshen Zhou
    Nature Communications, 8
  • [26] Edge-Site-Free and Topological-Defect-Rich Carbon Cathode for High-Performance Lithium-Oxygen Batteries
    Yu, Wei
    Yoshii, Takeharu
    Aziz, Alex
    Tang, Rui
    Pan, Zheng-Ze
    Inoue, Kazutoshi
    Kotani, Motoko
    Tanaka, Hideki
    Scholtzova, Eva
    Tunega, Daniel
    Nishina, Yuta
    Nishioka, Kiho
    Nakanishi, Shuji
    Zhou, Yi
    Terasaki, Osamu
    Nishihara, Hirotomo
    ADVANCED SCIENCE, 2023, 10 (16)
  • [27] Cobalt nanoparticles decorated hollow N-doped carbon nanospindles enable high-performance lithium-oxygen batteries
    Yang, Xueyun
    Zhu, Jianhao
    Wang, Yingli
    Wang, Jiacun
    Li, Yajuan
    Gu, Yuanxiang
    Lv, Qingliang
    Wang, Lei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 683 : 926 - 933
  • [28] CoMoP2 nanoparticles anchored on N, P doped carbon nanosheets for high-performance lithium-oxygen batteries
    Xu, Haoran
    Zhao, Lanling
    Liu, Xiaomeng
    Li, Deyuan
    Xia, Qing
    Cao, Xueying
    Wang, Jun
    Zhang, Weibin
    Wang, Huaisheng
    Zhang, Jintao
    FLATCHEM, 2021, 25
  • [29] Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes
    Wu, Shichao
    Qiao, Yu
    Yang, Sixie
    Ishida, Masayoshi
    He, Ping
    Zhou, Haoshen
    NATURE COMMUNICATIONS, 2017, 8
  • [30] Hybrid solid electrolyte enabled dendrite-free Li anodes for high-performance quasi-solid-state lithium-oxygen batteries
    Jin Wang
    Gang Huang
    Jun-Min Yan
    Jin-Ling Ma
    Tong Liu
    Miao-Miao Shi
    Yue Yu
    Miao-Miao Zhang
    Ji-Lin Tang
    Xin-Bo Zhang
    National Science Review, 2021, 8 (02) : 123 - 133