On orientation metric and euclidean Steiner tree constructions

被引:0
|
作者
Li, YY [1 ]
Leung, KS [1 ]
Wong, CK [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, NT, Hong Kong
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider Steiner minimal trees (SMT) in the plane, where only orientations with angle i pi/sigma, 0 less than or equal to i less than or equal to sigma - 1 and sigma an integer, are allowed. The orientations define a metric, called the orientation metric, lambda(sigma), in a natural way. In particular, lambda(2) metric is the rectilinear metric and the Euclidean metric can be regarded as lambda(infinity) metric. In this paper, we provide a method to find an optimal lambda(sigma) SMT for 3 or 4 points by analyzing the topology of lambda(sigma) SMT's in great details. Utilizing these results and based on the idea of loop detection first proposed in [8], we further develop an O(n(2)) time heuristic for the general lambda(sigma) SMT problem, including the Euclidean metric. Experiments performed on publicly available benchmark data for 12 different metrics, plus the Euclidean metric, demonstrate the efficiency of our algorithms and the quality of our results.
引用
收藏
页码:E241 / E243
页数:3
相关论文
共 50 条
  • [1] Efficient heuristics for orientation metric and Euclidean Steiner tree problems
    Li, YY
    Leung, KS
    Wong, CK
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2000, 4 (01) : 79 - 98
  • [2] Efficient Heuristics for Orientation Metric and Euclidean Steiner Tree Problems
    Y.Y. Li
    K.S. Leung
    C.K. Wong
    Journal of Combinatorial Optimization, 2000, 4 : 79 - 98
  • [3] Steiner tree constructions in λ3-metric
    Li, YY
    Cheung, SK
    Leung, KS
    Wong, CK
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1998, 45 (05): : 563 - 574
  • [4] The Euclidean bottleneck Steiner tree and Steiner tree with minimum number of Steiner points
    Du, DZ
    Wang, LS
    Xu, BA
    COMPUTING AND COMBINATORICS, 2001, 2108 : 509 - 518
  • [5] AN O(N LOG N) HEURISTIC FOR STEINER MINIMAL TREE PROBLEMS ON THE EUCLIDEAN METRIC
    SMITH, JM
    LEE, DT
    LIEBMAN, JS
    NETWORKS, 1981, 11 (01) : 23 - 39
  • [6] On the history of the Euclidean Steiner tree problem
    Brazil, Marcus
    Graham, Ronald L.
    Thomas, Doreen A.
    Zachariasen, Martin
    ARCHIVE FOR HISTORY OF EXACT SCIENCES, 2014, 68 (03) : 327 - 354
  • [7] On the history of the Euclidean Steiner tree problem
    Marcus Brazil
    Ronald L. Graham
    Doreen A. Thomas
    Martin Zachariasen
    Archive for History of Exact Sciences, 2014, 68 : 327 - 354
  • [8] The Euclidean Bottleneck Full Steiner Tree Problem
    A. Karim Abu-Affash
    Algorithmica, 2015, 71 : 139 - 151
  • [9] The Euclidean Bottleneck Full Steiner Tree Problem
    Abu-Affash, A. Karim
    ALGORITHMICA, 2015, 71 (01) : 139 - 151
  • [10] Two heuristics for the Euclidean Steiner tree problem
    Dreyer, DR
    Overton, ML
    JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (01) : 95 - 106