Predefined-time distributed optimization of general linear multi-agent systems

被引:35
|
作者
Li, Shiling [1 ]
Nian, Xiaohong [1 ]
Deng, Zhenhua [1 ]
Chen, Zhao [1 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Distributed optimization; Homogeneous and heterogeneous linear; systems; Equality constraint; Time-base generator; Predefined-time convergence; RESOURCE-ALLOCATION; OPTIMAL COORDINATION; LEADER; ALGORITHMS;
D O I
10.1016/j.ins.2021.10.060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the predefined-time distributed optimization problems of homo-geneous and heterogeneous linear multi-agent systems under undirected and connected communication topologies, in which, all agents share coupled equality constraint. In order to make all agents converge to the optimal output at predefined-time cooperatively, we propose two distributed algorithms for homogeneous and heterogeneous multi-agent sys-tems according to time-base generator technology and output feedback, therein, the opti-mal output can make the global cost function reach minimum. In the design of the algorithms, the control gains are not required, which can avoid the requirement of some global information in advance. Furthermore, all agents converge to the optimal output with exponential speed, and we can set the convergence time arbitrarily. Finally, we provide examples to illustrate the effectiveness of the proposed distributed algorithms. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:111 / 125
页数:15
相关论文
共 50 条
  • [41] Predefined-time control of distributed-order systems
    Aldo Jonathan Muñoz-Vázquez
    Guillermo Fernández-Anaya
    Juan Diego Sánchez-Torres
    Fidel Meléndez-Vázquez
    Nonlinear Dynamics, 2021, 103 : 2689 - 2700
  • [42] Neural-Network-Based Predefined-Time Adaptive Consensus in Nonlinear Multi-Agent Systems With Switching Topologies
    Zhu, Yanzheng
    Wang, Zuo
    Liang, Hongjing
    Ahn, Choon Ki
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 9995 - 10005
  • [43] Predefined-time bipartite tracking consensus for second-order multi-agent systems with cooperative and antagonistic networks
    Ren, Yuanhong
    Chen, Zhiwen
    Ji, Yong
    Li, Zhiwei
    JOURNAL OF CONTROL AND DECISION, 2023, 10 (02) : 280 - 292
  • [44] Predefined-time control of distributed-order systems
    Munoz-Vazquez, Aldo Jonathan
    Fernandez-Anaya, Guillermo
    Sanchez-Torres, Juan Diego
    Melendez-Vazquez, Fidel
    NONLINEAR DYNAMICS, 2021, 103 (03) : 2689 - 2700
  • [45] Multiobjective Distributed Optimization via a Predefined-Time Multiagent Approach
    Liu, Yang
    Xia, Zicong
    Gui, Weihua
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (11) : 6998 - 7005
  • [46] Predefined-time distributed multiobjective optimization for network resource allocation
    Zhang, Kunpeng
    Xu, Lei
    Yi, Xinlei
    Ding, Zhengtao
    Johansson, Karl H.
    Chai, Tianyou
    Yang, Tao
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (07)
  • [47] Distributed hybrid optimization for multi-agent systems
    XueGang Tan
    Yang Yuan
    WangLi He
    JinDe Cao
    TingWen Huang
    Science China Technological Sciences, 2022, 65 : 1651 - 1660
  • [48] Distributed hybrid optimization for multi-agent systems
    Tan XueGang
    Yuan Yang
    He WangLi
    Cao JinDe
    Huang TingWen
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (08) : 1651 - 1660
  • [49] Distributed hybrid optimization for multi-agent systems
    TAN XueGang
    YUAN Yang
    HE WangLi
    CAO JinDe
    HUANG TingWen
    Science China Technological Sciences, 2022, (08) : 1651 - 1660
  • [50] Distributed hybrid optimization for multi-agent systems
    TAN XueGang
    YUAN Yang
    HE WangLi
    CAO JinDe
    HUANG TingWen
    Science China(Technological Sciences), 2022, 65 (08) : 1651 - 1660