Conservative Numerical Schemes for the Nonlinear Fractional Schrodinger Equation

被引:1
|
作者
Wu, Longbin [1 ]
Ma, Qiang [1 ]
Ding, Xiaohua [1 ]
机构
[1] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
基金
中国国家自然科学基金;
关键词
Crank-Nicolson Fourier collocation method; nonlinear fractional Schrodinger equation; conservation laws; existence and uniqueness; convergence; BIREFRINGENT OPTICAL-FIBERS; SPECTRAL METHOD; DIFFERENCE SCHEME; GALERKIN METHODS; STABILITY; EFFICIENT; SOLITONS;
D O I
10.4208/eajam.110920.060121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the Crank-Nicolson Fourier collocation method for the nonlinear fractional Schrodinger equation containing a fractional derivative. We prove that at each discrete time the method preserves the discrete mass and energy conservation laws. The existence, uniqueness and convergence of the numerical solution are also investigated. In particular, we show that the method has the second-order accuracy in time and the spectral accuracy in space. Since the proposed schemes are implicit, they are solved by an iteration algorithm with FFT. Two examples illustrate the efficiency and accuracy of the numerical schemes.
引用
收藏
页码:560 / 579
页数:20
相关论文
共 50 条
  • [1] High-order conservative schemes for the space fractional nonlinear Schrodinger equation
    Wang, Junjie
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 165 : 248 - 269
  • [2] A conservative numerical method for the fractional nonlinear Schrodinger equation in two dimensions
    Zhang, Rongpei
    Zhang, Yong-Tao
    Wang, Zhen
    Chen, Bo
    Zhang, Yi
    [J]. SCIENCE CHINA-MATHEMATICS, 2019, 62 (10) : 1997 - 2014
  • [3] NUMERICAL DISPERSIVE SCHEMES FOR THE NONLINEAR SCHRODINGER EQUATION
    Ignat, Liviu I.
    Zuazua, Enrique
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1366 - 1390
  • [4] CONSERVATIVE AND NONCONSERVATIVE SCHEMES FOR THE SOLUTION OF THE NONLINEAR SCHRODINGER-EQUATION
    SANZSERNA, JM
    VERWER, JG
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1986, 6 (01) : 25 - 42
  • [5] Conservative finite difference schemes for the chiral nonlinear Schrodinger equation
    Ismail, Mohammad S.
    Al-Basyouni, Khalil S.
    Aydin, Ayhan
    [J]. BOUNDARY VALUE PROBLEMS, 2015,
  • [6] Completely conservative numerical scheme for the nonlinear Schrodinger equation
    Bulygin, A. D.
    Zemlyanov, A. A.
    [J]. 24TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2018, 10833
  • [7] A conservative linearized difference scheme for the nonlinear fractional Schrodinger equation
    Wang, Pengde
    Huang, Chengming
    [J]. NUMERICAL ALGORITHMS, 2015, 69 (03) : 625 - 641
  • [8] Fractional error estimates of splitting schemes for the nonlinear Schrodinger equation
    Eilinghoff, Johannes
    Schnaubelt, Roland
    Schratz, Katharina
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) : 740 - 760
  • [9] High-order schemes for the fractional coupled nonlinear Schrodinger equation
    Yin, Fengli
    Xu, Dongliang
    Yang, Wenjie
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (04) : 1434 - 1453
  • [10] High-order conservative schemes for the nonlinear Schrodinger equation in the semiclassical limit
    Cai, Jiaxiang
    Zhang, Haihui
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 144