Blow up threshold for the Gross-Pitaevskii system with combined nonlocal nonlinearities

被引:2
|
作者
Liu, Baiyu [1 ]
Ma, Li [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal Gross-Pitaevskii system; Potential well method; Global existence; Blow up; DIPOLAR QUANTUM GASES; GLOBAL EXISTENCE; SCHRODINGER-EQUATIONS; SHARP THRESHOLD; CAUCHY-PROBLEM; SPACE;
D O I
10.1016/j.jmaa.2015.01.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Gross-Pitaevskii system with combined nonlocal nonlinearities. First, we establish both the stable regime and the unstable regime. Then via a construction of cross minimization problem, the blow up threshold is established. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1214 / 1224
页数:11
相关论文
共 50 条
  • [41] Dynamics of fractional solitonic profiles to multicomponent Gross-Pitaevskii system
    Younas, Usman
    Yao, Fengping
    PHYSICA SCRIPTA, 2024, 99 (08)
  • [42] Rigidity of phase transitions for the fractional elliptic Gross-Pitaevskii system
    Le, Phuong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 26 (1) : 237 - 252
  • [43] GROSS-PITAEVSKII EQUATION FOR A STRONGLY INTERACTING SUPERFLUID BOSON SYSTEM
    KOBE, DH
    PHYSICAL REVIEW A, 1972, 5 (02): : 854 - &
  • [44] Modulational instability for a cubic-quintic model of coupled Gross-Pitaevskii equations with residual nonlinearities
    Mboumba, Maik Delon
    Kamsap, Marius Romuald
    Moubissi, Alain Brice
    Ekogo, Thierry Blanchard
    Kofane, Timoleon Crepin
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [45] Blow-up of solutions of a system of equations with double nonlinearities and nonlocal sources
    Korpusov, M. O.
    DIFFERENTIAL EQUATIONS, 2013, 49 (12) : 1511 - 1517
  • [46] Blow-up of solutions of a system of equations with double nonlinearities and nonlocal sources
    M. O. Korpusov
    Differential Equations, 2013, 49 : 1511 - 1517
  • [47] Sharp threshold of global existence for non-linear Gross-Pitaevskii equation in N
    Chen, Guanggan
    Zhang, Jian
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2006, 71 (02): : 232 - 240
  • [48] Polariton condensation threshold investigation through the numerical resolution of the generalized Gross-Pitaevskii equation
    Gargoubi, Hamis
    Guillet, Thierry
    Jaziri, Sihem
    Balti, Jalloul
    Guizal, Brahim
    PHYSICAL REVIEW E, 2016, 94 (04)
  • [49] Sharp threshold of global existence for non-linear Gross-Pitaevskii equation in RN
    Chen, GG
    Zhang, J
    IMA JOURNAL OF APPLIED MATHEMATICS, 2006, 71 (02) : 232 - 240
  • [50] A generalized nonlocal Gross-Pitaevskii (NGP) equation with an arbitrary time-dependent linear potential
    Li, Li
    Yu, Fajun
    Duan, Chaonan
    APPLIED MATHEMATICS LETTERS, 2020, 110