Ill-posedness for the Camassa-Holm and related equations in Besov spaces

被引:29
|
作者
Li, Jinlu [1 ]
Yu, Yanghai [2 ]
Zhu, Weipeng [3 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
[3] Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Camassa-Holm equation; Shallow water wave models; Ill-posedness; Besov space; SHALLOW-WATER EQUATION; WELL-POSEDNESS; NONUNIFORM DEPENDENCE; CAUCHY-PROBLEM; INITIAL DATA; EXISTENCE; TRAJECTORIES; STABILITY; BREAKING; FAMILY;
D O I
10.1016/j.jde.2021.10.052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a construction of u(0) is an element of B-p,infinity(sigma) such that the corresponding solution to the Camassa-Holm equation starting from u(0) is discontinuous at t = 0 in the metric of B-p,infinity(sigma), which implies the ill-posedness for this equation in B-p,infinity(sigma). We also apply our method to the b-equation and Novikov equation. (C) 2021 Published by Elsevier Inc.
引用
收藏
页码:403 / 417
页数:15
相关论文
共 50 条
  • [41] On the well-posedness of the Camassa-Holm equation in the Triebel-Lizorkin spaces
    Yang, Minsuk
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 20 - 31
  • [42] Ill-posedness for the 2D viscous shallow water equations in the critical Besov spaces
    Jinlu Li
    Pingzhou Hong
    Weipeng Zhu
    Journal of Evolution Equations, 2020, 20 : 1287 - 1299
  • [43] Energy conservation and well-posedness of the Camassa-Holm equation in Sobolev spaces
    Guo, Yingying
    Ye, Weikui
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):
  • [44] The well-posedness for the Camassa-Holm type equations in critical Besov spaces BP,11+1/p with 1 ≤ P < plus ∞
    Ye, Weikui
    Yin, Zhaoyang
    Guo, Yingying
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 367 : 729 - 748
  • [45] On well-posedness of two-component Camassa-Holm system in the critical Besov space
    Chen, Defu
    Li, Yongsheng
    Yan, Wei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 120 : 285 - 298
  • [46] Local Well-Posedness of a Coupled Camassa-Holm System in Critical Spaces
    Liu, Xingxing
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (01): : 43 - 59
  • [47] ILL-POSEDNESS ISSUE FOR THE DRIFT DIFFUSION SYSTEM IN THE HOMOGENEOUS BESOV SPACES
    Iwabuchi, Tsukasa
    Ogawa, Takayoshi
    OSAKA JOURNAL OF MATHEMATICS, 2016, 53 (04) : 919 - 939
  • [48] Well-posedness and ill-posedness of a multidimensional chemotaxis system in the critical Besov spaces
    Nie, Yao
    Yuan, Jia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
  • [49] Ill-posedness of the hyperbolic Keller-Segel model in Besov spaces
    Fei, Xiang
    Yu, Yanghai
    Fei, Mingwen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [50] Ill-posedness of the hyperbolic Keller-Segel model in Besov spaces
    Xiang Fei
    Yanghai Yu
    Mingwen Fei
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74