Comparative study of the thermal performance of four different shell-and-tube heat exchangers used as latent heat thermal energy storage systems

被引:49
|
作者
Gasia, Jaume [1 ]
Diriken, Jan [2 ,3 ]
Bourke, Malcolm [3 ]
Van Bael, Johan [2 ,4 ]
Cabeza, Luisa F. [1 ]
机构
[1] Univ Lleida, INSPIRES Res Ctr, GREA Innovacio Concurrent, Pere Cabrera S-N, Lleida 25001, Spain
[2] Flemish Inst Technol Res VITO, Boeretang 200, BE-2400 Mol, Belgium
[3] Glen Dimplex Renewables GDC, Church Rd, Portadown BT63 SHU, Co Armagh, Ireland
[4] Energyville Joint Venture VITO NV & KU Leuven, Thor Pk 8300, BE-3600 Genk, Belgium
关键词
Thermal energy storage; Phase change material; Shell-and-tube; Heat exchanger; Key performance indicators; PHASE-CHANGE; UNIT; PCM; ENHANCEMENT; PARAFFIN; FINS;
D O I
10.1016/j.renene.2017.07.114
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, the influence of the addition of fins and the use of two different heat transfer fluids (water and a commercial silicone) have been experimentally tested and compared in four latent heat thermal energy storage systems, based on the shell-and-tube heat exchanger concept, using paraffin RT58 as phase change material. Three European institutions were involved under the framework of the MERITS project. A common approach (temperature and power profiles), and five different key performance indicators have been defined and used for the comparison: energy charged, average power, 5-min peak power, peak power to energy ratio, and time. For the same heat transfer fluid, results showed that finned designs (4.7-9.4 times more heat transfer surface) showed an improvement of up to 40%. On the contrary, for the same design, water (which has a specific heat 3 times higher and a thermal conductivity 4.9 times higher than silicone Syltherm 800), yielded results up to 44% higher. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:934 / 944
页数:11
相关论文
共 50 条
  • [31] Experimental Study on Performance of Shell-in-tube Latent Heat Thermal Energy Storage System
    Zhang, Teng-Teng
    Qu, Zhi-Guo
    Xu, Hong-Tao
    Luo, Zhu-Qing
    Zhang, Jian-Fei
    Miao, Yu-Bo
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2021, 42 (09): : 2345 - 2351
  • [32] Latent heat thermal energy storage enhancement in triplex tube heat exchangers: A comparative study on different tree-shaped fin structures
    Esmaeili, Zeinab
    Vahidhosseini, Seyed Mohammad
    Rashidi, Saman
    Rafee, Roohollah
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 157
  • [33] Shell-and-Tube Latent Heat Thermal Energy Storage Design Methodology with Material Selection, Storage Performance Evaluation, and Cost Minimization
    Yang, Lizhong
    Xu, Haoxin
    Cola, Fabrizio
    Akhmetov, Bakytzhan
    Gil, Antoni
    Cabeza, Luisa F.
    Romagnoli, Alessandro
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [34] Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems
    Seddegh, Saeid
    Wang, Xiaolin
    Joybari, Mahmood Mastani
    Haghighat, Fariborz
    ENERGY, 2017, 137 : 69 - 82
  • [35] Numerical investigation of a shell-and-tube latent heat thermal energy storage system for urban heating network
    Lamrani, Bilal
    Kousksou, Tarik
    JOURNAL OF ENERGY STORAGE, 2021, 43
  • [36] The error of neglecting natural convection in high temperature vertical shell-and-tube latent heat thermal energy storage systems
    Tehrani, S. Saeed Mostafavi
    Diarce, Gonzalo
    Taylor, Robert A.
    SOLAR ENERGY, 2018, 174 : 489 - 501
  • [37] NUMERICAL-SIMULATION OF A SHELL-AND-TUBE LATENT-HEAT THERMAL-ENERGY STORAGE UNIT
    LACROIX, M
    SOLAR ENERGY, 1993, 50 (04) : 357 - 367
  • [38] Economic evaluation of shell-and-tube latent heat thermal energy storage for concentrating solar power applications
    Bai, F.
    Wang, Y.
    Wang, Z.
    Sun, Y.
    Beath, A.
    INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, SOLARPACES 2014, 2015, 69 : 737 - 747
  • [39] Evaluation and comparison of thermal performance of latent heat storage units with shell-and-tube, rectangular, and cylindrical configurations
    Ding, Chen
    Pei, Jinchen
    Wang, Shengnan
    Wang, Yichun
    APPLIED THERMAL ENGINEERING, 2023, 218
  • [40] EVALUATING PERFORMANCE OF SHELL-AND-TUBE HEAT EXCHANGERS
    PALMOR, Z
    DAYAN, J
    AVRIEL, M
    ISRAEL JOURNAL OF TECHNOLOGY, 1973, 11 (04): : 273 - 282