Comparative study of the thermal performance of four different shell-and-tube heat exchangers used as latent heat thermal energy storage systems

被引:49
|
作者
Gasia, Jaume [1 ]
Diriken, Jan [2 ,3 ]
Bourke, Malcolm [3 ]
Van Bael, Johan [2 ,4 ]
Cabeza, Luisa F. [1 ]
机构
[1] Univ Lleida, INSPIRES Res Ctr, GREA Innovacio Concurrent, Pere Cabrera S-N, Lleida 25001, Spain
[2] Flemish Inst Technol Res VITO, Boeretang 200, BE-2400 Mol, Belgium
[3] Glen Dimplex Renewables GDC, Church Rd, Portadown BT63 SHU, Co Armagh, Ireland
[4] Energyville Joint Venture VITO NV & KU Leuven, Thor Pk 8300, BE-3600 Genk, Belgium
关键词
Thermal energy storage; Phase change material; Shell-and-tube; Heat exchanger; Key performance indicators; PHASE-CHANGE; UNIT; PCM; ENHANCEMENT; PARAFFIN; FINS;
D O I
10.1016/j.renene.2017.07.114
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, the influence of the addition of fins and the use of two different heat transfer fluids (water and a commercial silicone) have been experimentally tested and compared in four latent heat thermal energy storage systems, based on the shell-and-tube heat exchanger concept, using paraffin RT58 as phase change material. Three European institutions were involved under the framework of the MERITS project. A common approach (temperature and power profiles), and five different key performance indicators have been defined and used for the comparison: energy charged, average power, 5-min peak power, peak power to energy ratio, and time. For the same heat transfer fluid, results showed that finned designs (4.7-9.4 times more heat transfer surface) showed an improvement of up to 40%. On the contrary, for the same design, water (which has a specific heat 3 times higher and a thermal conductivity 4.9 times higher than silicone Syltherm 800), yielded results up to 44% higher. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
下载
收藏
页码:934 / 944
页数:11
相关论文
共 50 条
  • [1] Heat transfer performance of a finned shell-and-tube latent heat thermal energy storage unit in the presence of thermal radiation
    Shen, Zu-Guo
    Chen, Shuai
    Chen, Ben
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [2] Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins
    Yang, Xiaohu
    Lu, Zhao
    Bai, Qingsong
    Zhang, Qunli
    Jin, Liwen
    Yan, Jinyue
    APPLIED ENERGY, 2017, 202 : 558 - 570
  • [3] Comparative study between heat pipe and shell-and-tube thermal energy storage
    Miguel Maldonado, Jose
    Verez, David
    de Gracia, Alvaro
    Cabeza, Luisa F.
    APPLIED THERMAL ENGINEERING, 2021, 192
  • [4] Comparative study between heat pipe and shell-and-tube thermal energy storage
    Maldonado, Jose Miguel
    Verez, David
    de Gracia, Alvaro
    Cabeza, Luisa F.
    Applied Thermal Engineering, 2021, 192
  • [5] Study on heat transfer enhancement of horizontal shell-and-tube latent heat thermal energy storage unit
    Hu Z.
    Sun Z.
    Meng E.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (03): : 450 - 455
  • [6] Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system
    Ge, Ruihuan
    Li, Qi
    Li, Chuan
    Liu, Qing
    RENEWABLE ENERGY, 2022, 187 : 829 - 843
  • [7] A combined heat transfer enhancement technique for shell-and-tube latent heat thermal energy storage
    Woloszyn, Jerzy
    Szopa, Krystian
    RENEWABLE ENERGY, 2023, 202 : 1342 - 1356
  • [8] Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit
    Pu, Liang
    Zhang, Shengqi
    Xu, Lingling
    Li, Yanzhong
    APPLIED THERMAL ENGINEERING, 2020, 166
  • [9] Enhancing thermal performance in shell-and-tube latent heat thermal energy storage units: An experimental and numerical study of shell geometry effects
    Parsa, Nazila
    Kamkari, Babak
    Abolghasemi, Hossein
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 154
  • [10] Comparative study of the thermal performance of four different parallel flow shell and tube heat exchangers with different performance indicators
    Yu, Chulin
    Zhang, Haiqing
    Wang, Youqiang
    Wang, Jin
    Gao, Bingjun
    Fang, Zhou
    OPEN PHYSICS, 2020, 18 (01): : 1121 - 1135