Generalized Stirling numbers with poly-Bernoulli and poly-Cauchy numbers

被引:2
|
作者
Komatsu, Takao [1 ]
Young, Paul Thomas [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Coll Charleston, Dept Math, Charleston, SC 29424 USA
关键词
Poly-Bernoulli numbers; poly-Cauchy numbers; generalized Stirling numbers;
D O I
10.1142/S1793042118500744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the generalized Stirling numbers studied by Hsu and Shiue, we define a new kind of generalized poly-Bernoulli and poly-Cauchy numbers. By using the formulae of the generalized Stirling numbers, we give their characteristic and combinatorial properties.
引用
收藏
页码:1211 / 1222
页数:12
相关论文
共 50 条
  • [31] Poly-Cauchy Numbers with Higher Level
    Komatsu, Takao
    Sirvent, Victor F.
    SYMMETRY-BASEL, 2023, 15 (02):
  • [32] On generalized poly-Bernoulli numbers and related L-functions
    Sasaki, Yoshitaka
    JOURNAL OF NUMBER THEORY, 2012, 132 (01) : 156 - 170
  • [33] Poly-Cauchy polynomials and generalized Bernoulli polynomials
    Komatsu T.
    Shibukawa G.
    Acta Scientiarum Mathematicarum, 2014, 80 (3-4): : 373 - 388
  • [34] A note on degenerate poly-Bernoulli numbers and polynomials
    Dae San Kim
    Taekyun Kim
    Advances in Difference Equations, 2015
  • [35] A note on a closed formula for poly-Bernoulli numbers
    Sanchez-Peregrino, R
    AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (08): : 755 - 756
  • [36] Recursion formulas for poly-Bernoulli numbers and their applications
    Ohno, Yasuo
    Sasaki, Yoshitaka
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (01) : 175 - 189
  • [37] The log-convexity of the poly-Cauchy numbers
    Komatsu, Takao
    Zhao, Feng-Zhen
    QUAESTIONES MATHEMATICAE, 2017, 40 (01) : 39 - 47
  • [38] A note on degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [39] Poly-Bernoulli numbers and polynomials with a q parameter
    Cenkci, Mehmet
    Komatsu, Takao
    JOURNAL OF NUMBER THEORY, 2015, 152 : 38 - 54
  • [40] Fully degenerate poly-Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Seo, Jong-Jin
    OPEN MATHEMATICS, 2016, 14 : 545 - 556