Dependency graph enhanced interactive attention network for aspect sentiment triplet extraction

被引:14
|
作者
Shi, Lingling [1 ]
Han, Donghong [1 ,2 ]
Han, Jiayi [3 ]
Qiao, Baiyou [1 ]
Wu, Gang [1 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang, Peoples R China
[2] Northeastern Univ, Key Lab Intelligent Comp Med Image, Minist Educ, Shenyang, Peoples R China
[3] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Interactive attention mechanism; Part; -of; -Speech; Dependency graph; Aspect sentiment triplet extraction;
D O I
10.1016/j.neucom.2022.07.067
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aspect sentiment triplet extraction is an extremely daunting task designed to identify the triplets from comments, where each triplet is composed of an aspect term, the related opinion term, and the sentiment between them. Existing research efforts majorly construct a novel tagging scheme to avoid the disadvantages of pipeline methods. However, the improvement is limited due to neglecting the implicit grammatical relationships among the three elements in a triplet. To cope with this limitation, we put forward an innovative Dependency Graph Enhanced Interactive Attention Network, which explicitly introduces the syntactic and semantic relationships between words. Specifically, an interactive attention mechanism is conceived to jointly consider both the contextual features learned from Bi-directional Long Short-Term Memory and the syntactic dependencies learned from the correspondent dependency graph in an iterative interaction manner. In addition, we notice that words with different Part-of-Speech categories have different contributions to the semantic expression of sentences. Accordingly, the information of different Part-of-Speech categories is recognized during the modeling process to properly capture the semantic relationships. Experiments on the benchmark datasets originally derived from SemEval Challenges illustrate that our presented approach has superiority over strong baselines. (c) 2022 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:315 / 324
页数:10
相关论文
共 50 条
  • [31] Embedding Extra Knowledge and A Dependency Tree Based on A Graph Attention Network for Aspect-based Sentiment Analysis
    Li, Yuanlin
    Sun, Xiao
    Wang, Meng
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [32] Improving context and syntactic dependency for aspect-based sentiment analysis using a fused graph attention network
    Peipei Wang
    Zhen Zhao
    Evolutionary Intelligence, 2024, 17 : 589 - 598
  • [33] Document-Level Sentiment Knowledge Transfer Network for Aspect Sentiment Triplet Extraction
    Tan, Long
    Su, Zixian
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 377 - 382
  • [34] Dual-Encoder Attention Fusion Model for Aspect Sentiment Triplet Extraction
    Zhang, Yunqi
    Li, Songda
    Lan, Yuquan
    Zhao, Hui
    Zhao, Gang
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [35] An Interactive Graph Attention Networks Model for Aspect-level Sentiment Analysis
    Han Hu
    Wu Yuanhang
    Qin Xiaoya
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (11) : 3282 - 3290
  • [36] A dual relation-encoder network for aspect sentiment triplet extraction
    Xia, Tian
    Sun, Xia
    Yang, Yidong
    Long, Yunfei
    Sutcliffe, Richard
    NEUROCOMPUTING, 2024, 597
  • [37] Syntactic Edge-Enhanced Graph Convolutional Networks for Aspect-Level Sentiment Classification With Interactive Attention
    Xiao, Yao
    Zhou, Guangyou
    IEEE ACCESS, 2020, 8 : 157068 - 157080
  • [38] Aspect opinion routing network with interactive attention for aspect-based sentiment classification
    Yang, Baiyu
    Han, Donghong
    Zhou, Rui
    Gao, Di
    Wu, Gang
    INFORMATION SCIENCES, 2022, 616 : 52 - 65
  • [39] Capsule Network with Interactive Attention for Aspect-Level Sentiment Classification
    Du, Chunning
    Sun, Haifeng
    Wang, Jingyu
    Qi, Qi
    Liao, Jianxin
    Xu, Tong
    Liu, Ming
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 5489 - 5498
  • [40] A BERT-based interactive attention network for aspect sentiment analysis
    Yang, Yu-Ting
    Feng, Lin
    Dai, Lei-Chao
    Journal of Computers (Taiwan), 2021, 32 (03) : 30 - 42