Dependency graph enhanced interactive attention network for aspect sentiment triplet extraction

被引:14
|
作者
Shi, Lingling [1 ]
Han, Donghong [1 ,2 ]
Han, Jiayi [3 ]
Qiao, Baiyou [1 ]
Wu, Gang [1 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang, Peoples R China
[2] Northeastern Univ, Key Lab Intelligent Comp Med Image, Minist Educ, Shenyang, Peoples R China
[3] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Interactive attention mechanism; Part; -of; -Speech; Dependency graph; Aspect sentiment triplet extraction;
D O I
10.1016/j.neucom.2022.07.067
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aspect sentiment triplet extraction is an extremely daunting task designed to identify the triplets from comments, where each triplet is composed of an aspect term, the related opinion term, and the sentiment between them. Existing research efforts majorly construct a novel tagging scheme to avoid the disadvantages of pipeline methods. However, the improvement is limited due to neglecting the implicit grammatical relationships among the three elements in a triplet. To cope with this limitation, we put forward an innovative Dependency Graph Enhanced Interactive Attention Network, which explicitly introduces the syntactic and semantic relationships between words. Specifically, an interactive attention mechanism is conceived to jointly consider both the contextual features learned from Bi-directional Long Short-Term Memory and the syntactic dependencies learned from the correspondent dependency graph in an iterative interaction manner. In addition, we notice that words with different Part-of-Speech categories have different contributions to the semantic expression of sentences. Accordingly, the information of different Part-of-Speech categories is recognized during the modeling process to properly capture the semantic relationships. Experiments on the benchmark datasets originally derived from SemEval Challenges illustrate that our presented approach has superiority over strong baselines. (c) 2022 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:315 / 324
页数:10
相关论文
共 50 条
  • [1] Affective Commonsense Knowledge Enhanced Dependency Graph for aspect sentiment triplet extraction
    Xiaowen Sun
    Zhenfang Zhu
    Jiangtao Qi
    Zhen Zhao
    Hongli Pei
    The Journal of Supercomputing, 2024, 80 : 8614 - 8636
  • [2] Affective Commonsense Knowledge Enhanced Dependency Graph for aspect sentiment triplet extraction
    Sun, Xiaowen
    Zhu, Zhenfang
    Qi, Jiangtao
    Zhao, Zhen
    Pei, Hongli
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (07): : 8614 - 8636
  • [3] Improving Aspect Sentiment Triplet Extraction with Perturbed Masking and Edge-Enhanced Sentiment Graph Attention Network
    Yang, Songhua
    Zhang, Tengxun
    Xu, Hongfei
    Jia, Yuxiang
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [4] Span-based dependency-enhanced graph convolutional network for aspect sentiment triplet extraction
    Jin, Zhigang
    Tao, Manyue
    Wu, Xiaodong
    Zhang, Hao
    NEUROCOMPUTING, 2024, 564
  • [5] Dual-enhanced generative model with graph attention network and contrastive learning for aspect sentiment triplet extraction
    Xu, Haowen
    Tang, Mingwei
    Cai, Tao
    Hu, Jie
    Zhao, Mingfeng
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [6] Enhanced Multi-Channel Graph Convolutional Network for Aspect Sentiment Triplet Extraction
    Chen, Hao
    Zhai, Zepeng
    Feng, Fangxiang
    Li, Ruifan
    Wang, Xiaojie
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 2974 - 2985
  • [7] Multi-granularity enhanced graph convolutional network for aspect sentiment triplet extraction
    Tang, Mingwei
    Yang, Kun
    Tao, Linping
    Zhao, Mingfeng
    Zhou, Wei
    Big Data Research, 2025, 39
  • [8] IDCN: A Novel Interactive Dual Channel Network for Aspect Sentiment Triplet Extraction
    Liu, Ning
    Hu, Jie
    Yao, Shunyu
    Liu, Dan
    Yang, Mingchuan
    IEEE ACCESS, 2022, 10 : 116453 - 116466
  • [9] Phrase dependency relational graph attention network for Aspect-based Sentiment Analysis
    Wu, Haiyan
    Zhang, Zhiqiang
    Shi, Shaoyun
    Wu, Qingfeng
    Song, Haiyu
    KNOWLEDGE-BASED SYSTEMS, 2022, 236
  • [10] Semantic and Syntactic Enhanced Aspect Sentiment Triplet Extraction
    Chen, Zhexue
    Huang, Hong
    Liu, Bang
    Shi, Xuanhua
    Jin, Hai
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1474 - 1483