CLUSTERING WITH MINIMUM SPANNING TREES

被引:10
|
作者
Zhou, Yan [1 ]
Grygorash, Oleksandr [2 ]
Hain, Thomas F. [3 ]
机构
[1] Univ Texas Dallas, Erik Jonnson Sch Engn & Comp Sci, Richardson, TX 75080 USA
[2] Urban Insight Inc, Los Angeles, CA 90036 USA
[3] Univ S Alabama, Sch Comp & Informat Sci, Mobile, AL 36688 USA
关键词
Minimum spanning trees; k-constrained clustering; unconstrained clustering; representative point sets; standard deviation reduction; ALGORITHM;
D O I
10.1142/S0218213011000061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose two Euclidean minimum spanning tree based clustering algorithms - one a k-constrained, and the other an unconstrained algorithm. Our k-constrained clustering algorithm produces a k-partition of a set of points for any given k. The algorithm constructs a minimum spanning tree of a set of representative points and removes edges that satisfy a predefined criterion. The process is repeated until k clusters are produced. Our unconstrained clustering algorithm partitions a point set into a group a clusters by maximally reducing the overall standard deviation of the edges in the Euclidean minimum spanning tree constructed from a given point set, without prescribing the number of clusters. We present our experimental results comparing our proposed algorithms with k-means, X-means, CURE, Chameleon, and the Expectation-Maximization (EM) algorithm on both artificial data and benchmark data from the UCI repository. We also apply our algorithms to image color clustering and compare them with the standard minimum spanning tree clustering algorithm as well as CURE, Chameleon, and X-means.
引用
收藏
页码:139 / 177
页数:39
相关论文
共 50 条
  • [41] Minimum spanning trees with sums of ratios
    Skiscim, CC
    Palocsay, SW
    JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (02) : 103 - 120
  • [42] Distributed and Autonomic Minimum Spanning Trees
    Rodrigues, Luiz A.
    Duarte, Elias P., Jr.
    Arantes, Luciana
    2014 BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 2014, : 138 - 146
  • [43] Minimum restricted diameter spanning trees
    Hassin, R
    Levin, A
    DISCRETE APPLIED MATHEMATICS, 2004, 137 (03) : 343 - 357
  • [44] Counting minimum weight spanning trees
    Broder, AZ
    Mayr, EW
    JOURNAL OF ALGORITHMS, 1997, 24 (01) : 171 - 176
  • [45] Distributed Minimum Degree Spanning Trees
    Dinitz, Michael
    Halldorsson, Magnus M.
    Izumi, Taisuke
    Newport, Calvin
    PROCEEDINGS OF THE 2019 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '19), 2019, : 511 - 520
  • [46] On the Simultaneous Minimum Spanning Trees Problem
    Konecny, Matej
    Kucera, Stanislav
    Novotna, Jana
    Pekarek, Jakub
    Smolik, Martin
    Tetek, Jakub
    Topfer, Martin
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2018, 2018, 10743 : 235 - 248
  • [47] Computing minimum spanning trees with uncertainty
    Erlebach, Thomas
    Hoffmann, Michael
    Krizanc, Danny
    Mihal'ak, Matus
    Raman, Rajeev
    STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2008, : 277 - +
  • [48] RECENT DEVELOPMENTS ON MINIMUM SPANNING TREES
    YAO, AC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A597 - A597
  • [49] Minimum spanning trees and dissimilarity analysis
    Leclerc, B
    ORDINAL AND SYMBOLIC DATA ANALYSIS, 1996, : 215 - 224
  • [50] NOTE ON BISECTING MINIMUM SPANNING TREES
    BOYCE, WM
    GAREY, MR
    JOHNSON, DS
    NETWORKS, 1978, 8 (03) : 187 - 192